{"title":"由含硼共价有机框架构建的不对称防火凝胶聚合物电解质用于无树枝状突起的钠金属电池","authors":"Zhanming Liu, Rui Wang, Jiayi Yu, Zhengrui Miao, Zijian Xu, Jianguo Ren, Suli Chen, Tianxi Liu","doi":"10.1007/s12274-024-6910-0","DOIUrl":null,"url":null,"abstract":"<div><p>Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). However, GPEs often suffer from combustion risk and inferior interfacial compatibility toward Na metal anode, which severely limit their wide commercial applications. Here, a rational design of asymmetric fireproof GPE (AFGPE) modified with a boron-contained covalent organic framework (BCOF) on one side is developed through <i>in-situ</i> crosslinking polymerization process. Benefiting from the unique structure and composition, the resulting AFGPE exhibits high Na<sup>+</sup> transference number, wide electrochemical window, excellent mechanical properties and high safety. Especially, the nanoscale BCOF layer with uniform nanochannels works as ion sieve that homogenizes Na<sup>+</sup> flux during Na plating process, while the abundant Lewis-acid B sites can strongly capture counter anions and decrease space charge layer at anode side, thus promoting the uniform Na deposition to effectively suppress dendrite growth. Consequently, the Na/AFGPE/Na symmetric cells demonstrate remarkable cycling stability for over 1200 h at 0.1 mA·cm<sup>-2</sup>, and the solid-state SMBs exhibit outstanding cycling properties and rate capability, delivering a high capacity retention of 96.4% under current density of 1 C for over 1000 cycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9679 - 9687"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric fireproof gel polymer electrolyte constructed by boron-contained covalent organic framework for dendrite-free sodium metal battery\",\"authors\":\"Zhanming Liu, Rui Wang, Jiayi Yu, Zhengrui Miao, Zijian Xu, Jianguo Ren, Suli Chen, Tianxi Liu\",\"doi\":\"10.1007/s12274-024-6910-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). However, GPEs often suffer from combustion risk and inferior interfacial compatibility toward Na metal anode, which severely limit their wide commercial applications. Here, a rational design of asymmetric fireproof GPE (AFGPE) modified with a boron-contained covalent organic framework (BCOF) on one side is developed through <i>in-situ</i> crosslinking polymerization process. Benefiting from the unique structure and composition, the resulting AFGPE exhibits high Na<sup>+</sup> transference number, wide electrochemical window, excellent mechanical properties and high safety. Especially, the nanoscale BCOF layer with uniform nanochannels works as ion sieve that homogenizes Na<sup>+</sup> flux during Na plating process, while the abundant Lewis-acid B sites can strongly capture counter anions and decrease space charge layer at anode side, thus promoting the uniform Na deposition to effectively suppress dendrite growth. Consequently, the Na/AFGPE/Na symmetric cells demonstrate remarkable cycling stability for over 1200 h at 0.1 mA·cm<sup>-2</sup>, and the solid-state SMBs exhibit outstanding cycling properties and rate capability, delivering a high capacity retention of 96.4% under current density of 1 C for over 1000 cycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9679 - 9687\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6910-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6910-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
凝胶聚合物电解质(GPE)具有灵活性、易加工性和低成本等特点,被认为是下一代钠金属电池(SMB)中传统液态电解质的理想替代品。然而,GPE 通常存在燃烧风险以及与钠金属阳极的界面相容性较差的问题,这严重限制了其广泛的商业应用。在此,我们通过原位交联聚合工艺,开发出一种合理设计的非对称防火 GPE(AFGPE),其一侧采用含硼共价有机框架(BCOF)进行改性。得益于其独特的结构和组成,所制得的 AFGPE 具有高 Na+ 迁移数、宽电化学窗口、优异的机械性能和高安全性。特别是具有均匀纳米通道的纳米级 BCOF 层在 Na 电镀过程中起到了离子筛的作用,使 Na+ 通量均匀化,而丰富的路易斯酸 B 位点能强烈捕捉反阴离子,减少阳极侧的空间电荷层,从而促进 Na 的均匀沉积,有效抑制树枝状晶生长。因此,Na/AFGPE/Na 对称电池在 0.1 mA-cm-2 的条件下可稳定循环 1200 小时以上,固态 SMB 具有出色的循环特性和速率能力,在电流密度为 1 C 的条件下可循环 1000 次以上,容量保持率高达 96.4%。
Asymmetric fireproof gel polymer electrolyte constructed by boron-contained covalent organic framework for dendrite-free sodium metal battery
Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). However, GPEs often suffer from combustion risk and inferior interfacial compatibility toward Na metal anode, which severely limit their wide commercial applications. Here, a rational design of asymmetric fireproof GPE (AFGPE) modified with a boron-contained covalent organic framework (BCOF) on one side is developed through in-situ crosslinking polymerization process. Benefiting from the unique structure and composition, the resulting AFGPE exhibits high Na+ transference number, wide electrochemical window, excellent mechanical properties and high safety. Especially, the nanoscale BCOF layer with uniform nanochannels works as ion sieve that homogenizes Na+ flux during Na plating process, while the abundant Lewis-acid B sites can strongly capture counter anions and decrease space charge layer at anode side, thus promoting the uniform Na deposition to effectively suppress dendrite growth. Consequently, the Na/AFGPE/Na symmetric cells demonstrate remarkable cycling stability for over 1200 h at 0.1 mA·cm-2, and the solid-state SMBs exhibit outstanding cycling properties and rate capability, delivering a high capacity retention of 96.4% under current density of 1 C for over 1000 cycles.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.