G. Franciolini, A. Ianniccari, A. Kehagias, D. Perrone and A. Riotto
{"title":"重正化原始黑洞","authors":"G. Franciolini, A. Ianniccari, A. Kehagias, D. Perrone and A. Riotto","doi":"10.1088/1475-7516/2024/11/001","DOIUrl":null,"url":null,"abstract":"The formation of primordial black holes in the early universe may happen through the collapse of large curvature perturbations generated during a non-attractor phase of inflation or through a curvaton-like dynamics after inflation. The fact that such small-scale curvature perturbation is typically non-Gaussian leads to the renormalization of composite operators built up from the smoothed density contrast and entering in the calculation of the primordial black abundance. Such renormalization causes the phenomenon of operator mixing and the appearance of an infinite tower of local, non-local and higher-derivative operators as well as to a sizable shift in the threshold for primordial black hole formation. This hints that the calculation of the primordial black hole abundance is more involved than what generally assumed. We show the impact of this phenomenon in a perturbatively non-gaussian scenario, giving also an estimate of its effect on the threshold for primordial black hole formation.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"26 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renormalized primordial black holes\",\"authors\":\"G. Franciolini, A. Ianniccari, A. Kehagias, D. Perrone and A. Riotto\",\"doi\":\"10.1088/1475-7516/2024/11/001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of primordial black holes in the early universe may happen through the collapse of large curvature perturbations generated during a non-attractor phase of inflation or through a curvaton-like dynamics after inflation. The fact that such small-scale curvature perturbation is typically non-Gaussian leads to the renormalization of composite operators built up from the smoothed density contrast and entering in the calculation of the primordial black abundance. Such renormalization causes the phenomenon of operator mixing and the appearance of an infinite tower of local, non-local and higher-derivative operators as well as to a sizable shift in the threshold for primordial black hole formation. This hints that the calculation of the primordial black hole abundance is more involved than what generally assumed. We show the impact of this phenomenon in a perturbatively non-gaussian scenario, giving also an estimate of its effect on the threshold for primordial black hole formation.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/11/001\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The formation of primordial black holes in the early universe may happen through the collapse of large curvature perturbations generated during a non-attractor phase of inflation or through a curvaton-like dynamics after inflation. The fact that such small-scale curvature perturbation is typically non-Gaussian leads to the renormalization of composite operators built up from the smoothed density contrast and entering in the calculation of the primordial black abundance. Such renormalization causes the phenomenon of operator mixing and the appearance of an infinite tower of local, non-local and higher-derivative operators as well as to a sizable shift in the threshold for primordial black hole formation. This hints that the calculation of the primordial black hole abundance is more involved than what generally assumed. We show the impact of this phenomenon in a perturbatively non-gaussian scenario, giving also an estimate of its effect on the threshold for primordial black hole formation.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.