独特的氧桥接镍原子对有效促进二氧化碳的电化学还原

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-05 DOI:10.1002/smll.202407463
Chaofan Zhang, Na Li, Yuefeng Liu, Ting Zhang, Riguang Zhang, Zhongkui Zhao
{"title":"独特的氧桥接镍原子对有效促进二氧化碳的电化学还原","authors":"Chaofan Zhang, Na Li, Yuefeng Liu, Ting Zhang, Riguang Zhang, Zhongkui Zhao","doi":"10.1002/smll.202407463","DOIUrl":null,"url":null,"abstract":"Benefiting from the synergism between adjacent bimetallic atoms, in comparison with single atom catalysts, the dual atom catalysts have displayed great potential in electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). However, the further modulation of the electronic structure of dual atom sites to enhance CO<sub>2</sub>RR performance still remains a challenge. Herein, an atomically dispersed oxygen-bridged Ni<sub>2</sub>N<sub>6</sub>O/NC catalyst with unique Ni-O-Ni sites is successfully synthesized through the microwave pyrolysis of the supported mixture containing the dinuclear nickel phthalocyanine and glucose on N-doped carbon nanosheets. Experiments and density functional theory calculation reveal that the Ni-O-Ni sites can adsorb H<sup>+</sup> from the KHCO<sub>3</sub> electrolyte to in situ-form the unique Ni-OH-Ni sites without Ni─Ni bonding interaction, which effectively lowers the energy barrier towards the formation of *COOH from CO<sub>2</sub>. As a result, the Ni<sub>2</sub>N<sub>6</sub>OH/NC catalyst exhibits a 99.4% of CO Faradaic efficiency with a 32.4 mA·cm<sup>−2</sup> of CO partial current density at −0.7 V versus RHE in H-cell, much superior to the Ni<sub>2</sub>N<sub>6</sub>/NC with a Ni-Ni bonding interaction prepared by a similar procedure to that for Ni<sub>2</sub>N<sub>6</sub>O/NC but replacing microwave pyrolysis by a traditional heating process.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique Oxygen-Bridged Nickel Atomic Pairs Efficiently Boost Electrochemical Reduction of Carbon Dioxide\",\"authors\":\"Chaofan Zhang, Na Li, Yuefeng Liu, Ting Zhang, Riguang Zhang, Zhongkui Zhao\",\"doi\":\"10.1002/smll.202407463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benefiting from the synergism between adjacent bimetallic atoms, in comparison with single atom catalysts, the dual atom catalysts have displayed great potential in electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). However, the further modulation of the electronic structure of dual atom sites to enhance CO<sub>2</sub>RR performance still remains a challenge. Herein, an atomically dispersed oxygen-bridged Ni<sub>2</sub>N<sub>6</sub>O/NC catalyst with unique Ni-O-Ni sites is successfully synthesized through the microwave pyrolysis of the supported mixture containing the dinuclear nickel phthalocyanine and glucose on N-doped carbon nanosheets. Experiments and density functional theory calculation reveal that the Ni-O-Ni sites can adsorb H<sup>+</sup> from the KHCO<sub>3</sub> electrolyte to in situ-form the unique Ni-OH-Ni sites without Ni─Ni bonding interaction, which effectively lowers the energy barrier towards the formation of *COOH from CO<sub>2</sub>. As a result, the Ni<sub>2</sub>N<sub>6</sub>OH/NC catalyst exhibits a 99.4% of CO Faradaic efficiency with a 32.4 mA·cm<sup>−2</sup> of CO partial current density at −0.7 V versus RHE in H-cell, much superior to the Ni<sub>2</sub>N<sub>6</sub>/NC with a Ni-Ni bonding interaction prepared by a similar procedure to that for Ni<sub>2</sub>N<sub>6</sub>O/NC but replacing microwave pyrolysis by a traditional heating process.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202407463\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407463","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与单原子催化剂相比,双原子催化剂得益于相邻双金属原子之间的协同作用,在电催化二氧化碳还原反应(CO2RR)中显示出巨大的潜力。然而,如何进一步调控双原子位点的电子结构以提高 CO2RR 性能仍然是一个挑战。本文通过微波热解掺杂 N 的碳纳米片上含有双核酞菁镍和葡萄糖的支撑混合物,成功合成了具有独特 Ni-O-Ni 位点的原子分散氧桥接 Ni2N6O/NC 催化剂。实验和密度泛函理论计算表明,Ni-O-Ni位点可以吸附KHCO3电解液中的H+,从而在原位形成独特的Ni-OH-Ni位点,而不存在Ni-Ni成键作用,这有效降低了从CO2形成*COOH的能垒。因此,Ni2N6OH/NC 催化剂的一氧化碳法拉第效率达到 99.4%,在-0.7 V 对 RHE 的氢电池中,一氧化碳部分电流密度为 32.4 mA-cm-2,远远优于通过与 Ni2N6O/NC 类似的程序制备的具有 Ni-Ni 键相互作用的 Ni2N6/NC,但用传统的加热过程取代了微波热解过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unique Oxygen-Bridged Nickel Atomic Pairs Efficiently Boost Electrochemical Reduction of Carbon Dioxide
Benefiting from the synergism between adjacent bimetallic atoms, in comparison with single atom catalysts, the dual atom catalysts have displayed great potential in electrocatalytic CO2 reduction reaction (CO2RR). However, the further modulation of the electronic structure of dual atom sites to enhance CO2RR performance still remains a challenge. Herein, an atomically dispersed oxygen-bridged Ni2N6O/NC catalyst with unique Ni-O-Ni sites is successfully synthesized through the microwave pyrolysis of the supported mixture containing the dinuclear nickel phthalocyanine and glucose on N-doped carbon nanosheets. Experiments and density functional theory calculation reveal that the Ni-O-Ni sites can adsorb H+ from the KHCO3 electrolyte to in situ-form the unique Ni-OH-Ni sites without Ni─Ni bonding interaction, which effectively lowers the energy barrier towards the formation of *COOH from CO2. As a result, the Ni2N6OH/NC catalyst exhibits a 99.4% of CO Faradaic efficiency with a 32.4 mA·cm−2 of CO partial current density at −0.7 V versus RHE in H-cell, much superior to the Ni2N6/NC with a Ni-Ni bonding interaction prepared by a similar procedure to that for Ni2N6O/NC but replacing microwave pyrolysis by a traditional heating process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Asymmetric Alkyl Chain Engineering for Efficient and Eco-Friendly Organic Photovoltaic Cells Unique Oxygen-Bridged Nickel Atomic Pairs Efficiently Boost Electrochemical Reduction of Carbon Dioxide A Multi-Enzyme Nanocascade to Target Disease-Relevant Metabolites Cu-Doped V-Based MOF Derivative VO2@Cu-VMOF as a Cathodic Catalyst for Electro-Fenton Degradation of Antibiotics Phage-Templated Synthesis of Targeted Photoactive 1D-Thiophene Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1