掺铁 Ni3S2 可诱导尿素辅助水电解增强的自重构。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-11-06 DOI:10.1021/acs.langmuir.4c03343
Xinyu Yang, Yifeng Liu, Qianqiao Chen, Wanchin Yu, Qin Zhong
{"title":"掺铁 Ni3S2 可诱导尿素辅助水电解增强的自重构。","authors":"Xinyu Yang, Yifeng Liu, Qianqiao Chen, Wanchin Yu, Qin Zhong","doi":"10.1021/acs.langmuir.4c03343","DOIUrl":null,"url":null,"abstract":"<p><p>Urea oxidation reaction (UOR) is an attractive alternative anodic reaction to oxygen evolution reaction (OER) for its low thermodynamic potential (0.37 V vs RHE). A major challenge that prohibits its practical application is the six-electron transfer process during UOR, demanding enhancements in the catalytic activity. Herein, a Fe-doped Ni<sub>3</sub>S<sub>2</sub> catalyst with a uniform flower-like structure is synthesized <i>in situ</i> on nickel foam via a simple one-step hydrothermal method. The electrochemical properties of Fe-Ni<sub>3</sub>S<sub>2</sub> are significantly improved since a current density of 10 mA cm<sup>-2</sup> only requires a 1.33 V potential and remains stable for 60 h. The structural characterization demonstrates a strong interaction between Fe and Ni<sub>3</sub>S<sub>2</sub>. After Fe doping, the active site increases, which promotes the formation of NiOOH on the catalyst surface, thus speeding up the UOR process. These changes are beneficial to charge transfer and optimize the adsorption energy of the intermediates. <i>In situ</i> EIS further confirms that Fe promotes electron transfer during the UOR process, reduces the interface resistance between the catalyst and the electrolyte, and lowers the driving voltage.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-Doped Ni<sub>3</sub>S<sub>2</sub> Induces Self-Reconstruction for Urea-Assisted Water Electrolysis Enhancement.\",\"authors\":\"Xinyu Yang, Yifeng Liu, Qianqiao Chen, Wanchin Yu, Qin Zhong\",\"doi\":\"10.1021/acs.langmuir.4c03343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urea oxidation reaction (UOR) is an attractive alternative anodic reaction to oxygen evolution reaction (OER) for its low thermodynamic potential (0.37 V vs RHE). A major challenge that prohibits its practical application is the six-electron transfer process during UOR, demanding enhancements in the catalytic activity. Herein, a Fe-doped Ni<sub>3</sub>S<sub>2</sub> catalyst with a uniform flower-like structure is synthesized <i>in situ</i> on nickel foam via a simple one-step hydrothermal method. The electrochemical properties of Fe-Ni<sub>3</sub>S<sub>2</sub> are significantly improved since a current density of 10 mA cm<sup>-2</sup> only requires a 1.33 V potential and remains stable for 60 h. The structural characterization demonstrates a strong interaction between Fe and Ni<sub>3</sub>S<sub>2</sub>. After Fe doping, the active site increases, which promotes the formation of NiOOH on the catalyst surface, thus speeding up the UOR process. These changes are beneficial to charge transfer and optimize the adsorption energy of the intermediates. <i>In situ</i> EIS further confirms that Fe promotes electron transfer during the UOR process, reduces the interface resistance between the catalyst and the electrolyte, and lowers the driving voltage.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03343\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03343","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尿素氧化反应(UOR)的热力学电位较低(0.37 V 对 RHE),是氧进化反应(OER)的一种有吸引力的替代阳极反应。阻碍其实际应用的一个主要挑战是 UOR 反应过程中的六电子转移过程,这就要求提高催化活性。本文通过简单的一步水热法,在泡沫镍上原位合成了具有均匀花状结构的掺铁 Ni3S2 催化剂。由于 10 mA cm-2 的电流密度只需要 1.33 V 的电位,且能保持稳定 60 小时,Fe-Ni3S2 的电化学性能得到了显著改善。掺入 Fe 后,活性位点增加,促进了催化剂表面 NiOOH 的形成,从而加快了 UOR 过程。这些变化有利于电荷转移,并优化了中间产物的吸附能。原位 EIS 进一步证实,铁在 UOR 过程中促进了电子转移,降低了催化剂与电解质之间的界面电阻,并降低了驱动电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe-Doped Ni3S2 Induces Self-Reconstruction for Urea-Assisted Water Electrolysis Enhancement.

Urea oxidation reaction (UOR) is an attractive alternative anodic reaction to oxygen evolution reaction (OER) for its low thermodynamic potential (0.37 V vs RHE). A major challenge that prohibits its practical application is the six-electron transfer process during UOR, demanding enhancements in the catalytic activity. Herein, a Fe-doped Ni3S2 catalyst with a uniform flower-like structure is synthesized in situ on nickel foam via a simple one-step hydrothermal method. The electrochemical properties of Fe-Ni3S2 are significantly improved since a current density of 10 mA cm-2 only requires a 1.33 V potential and remains stable for 60 h. The structural characterization demonstrates a strong interaction between Fe and Ni3S2. After Fe doping, the active site increases, which promotes the formation of NiOOH on the catalyst surface, thus speeding up the UOR process. These changes are beneficial to charge transfer and optimize the adsorption energy of the intermediates. In situ EIS further confirms that Fe promotes electron transfer during the UOR process, reduces the interface resistance between the catalyst and the electrolyte, and lowers the driving voltage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
pH-Responsive Natural Deep Eutectic Solvent: An Environmental Alternative for the Sustainable Extraction of Petroleum Hydrocarbons from Oil Sands Interfacial Assembly of Peptide Carbon Dot Hybrids Enables Photoinduced Electron Transfer with Improved Photoresponse Linearly Scaling Molecular Dynamic Modeling To Simulate Picosecond Laser Ablation of a Silicon Carbide Crystal Advances in Aerosol Nanostructuring: Functions and Control of Next-Generation Particles. Electrospinning of LaB6/PEDOT:PSS/PEO Fiber Composites of Unique Morphologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1