{"title":"具有宽室温窗口的蓝相液晶中的光诱导相变所产生的可调圆偏振发光。","authors":"Wenxin Kang, Xianyu Meng, Tianqi Ren, Jinbao Guo","doi":"10.1002/asia.202401211","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral luminescent liquid crystal (LC) materials with switchable circularly polarized luminescence (CPL) signals have received extensive attention, in which the use of light stimulation to achieve different CPL states is of great significance. However, there are very few reports on the generation and regulation of CPL signals enabled by blue phase LC (BPLC). Herein, achieving CPL signal inversion based on the phase transition induced by light/temperature stimulation in a BPLC system with a wide room-temperature window is reported. A binaphthalene azo-based chiral photoswitch (S)-switch 3 with high helical twisted power (HTP) and large HTP variation is synthesized, and a BP system with a wide room temperature range is further fabricated by doping (S)-switch 3 and a fluorescence molecule into a bulk LC. By regulating the doping amount of (S)-switch 3, a phase transition from BP to cholesteric (Ch) phase at room temperature is observed upon 365 nm UV light irradiation or during cooling process, and the polarization inversion of CPL signal is correspondingly found due to the different CPL generation mechanisms of BPLC and CLC. This study provides a new strategy for the flexible regulation of CPL signals in a BPLC system.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401211"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Circularly Polarized Luminescence Enabled by Photo-Induced Phase Transition in a Blue-Phase Liquid Crystal with a Wide Room-Temperature Window.\",\"authors\":\"Wenxin Kang, Xianyu Meng, Tianqi Ren, Jinbao Guo\",\"doi\":\"10.1002/asia.202401211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chiral luminescent liquid crystal (LC) materials with switchable circularly polarized luminescence (CPL) signals have received extensive attention, in which the use of light stimulation to achieve different CPL states is of great significance. However, there are very few reports on the generation and regulation of CPL signals enabled by blue phase LC (BPLC). Herein, achieving CPL signal inversion based on the phase transition induced by light/temperature stimulation in a BPLC system with a wide room-temperature window is reported. A binaphthalene azo-based chiral photoswitch (S)-switch 3 with high helical twisted power (HTP) and large HTP variation is synthesized, and a BP system with a wide room temperature range is further fabricated by doping (S)-switch 3 and a fluorescence molecule into a bulk LC. By regulating the doping amount of (S)-switch 3, a phase transition from BP to cholesteric (Ch) phase at room temperature is observed upon 365 nm UV light irradiation or during cooling process, and the polarization inversion of CPL signal is correspondingly found due to the different CPL generation mechanisms of BPLC and CLC. This study provides a new strategy for the flexible regulation of CPL signals in a BPLC system.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202401211\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401211\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401211","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tunable Circularly Polarized Luminescence Enabled by Photo-Induced Phase Transition in a Blue-Phase Liquid Crystal with a Wide Room-Temperature Window.
Chiral luminescent liquid crystal (LC) materials with switchable circularly polarized luminescence (CPL) signals have received extensive attention, in which the use of light stimulation to achieve different CPL states is of great significance. However, there are very few reports on the generation and regulation of CPL signals enabled by blue phase LC (BPLC). Herein, achieving CPL signal inversion based on the phase transition induced by light/temperature stimulation in a BPLC system with a wide room-temperature window is reported. A binaphthalene azo-based chiral photoswitch (S)-switch 3 with high helical twisted power (HTP) and large HTP variation is synthesized, and a BP system with a wide room temperature range is further fabricated by doping (S)-switch 3 and a fluorescence molecule into a bulk LC. By regulating the doping amount of (S)-switch 3, a phase transition from BP to cholesteric (Ch) phase at room temperature is observed upon 365 nm UV light irradiation or during cooling process, and the polarization inversion of CPL signal is correspondingly found due to the different CPL generation mechanisms of BPLC and CLC. This study provides a new strategy for the flexible regulation of CPL signals in a BPLC system.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).