Jeena Varghese, Visnja Babacic, Mikolaj Pochylski, Jacek Gapinski, Hans-Juergen Butt, George Fytas, Bartlomiej Graczykowski
{"title":"通过温度-压力退火实现聚合物胶体晶体的表面工程。","authors":"Jeena Varghese, Visnja Babacic, Mikolaj Pochylski, Jacek Gapinski, Hans-Juergen Butt, George Fytas, Bartlomiej Graczykowski","doi":"10.1002/marc.202400668","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer colloidal crystals (PCCs) have been widely explored as acoustic and optical metamaterials and as templates for nanolithography. However, fabrication impurities and fragility of the self-assembled structures are critical bottlenecks for the device's efficiency and applications. We have demonstrated that temperature-assisted pressure [ <math> <semantics><mrow><mi>T</mi> <mo>,</mo> <mi>p</mi> <mo>]</mo></mrow> <annotation>$T,p]$</annotation></semantics> </math> annealing results in the mechanical strengthening of PCCs, which improves with the annealing temperature. Here, the enhancement of elastic properties and morphological features of self-assembled PCC's is evaluated using Brillouin light scattering and scanning electron microscopy. The pressure-induced effects on the vibrational modes of PCCs are also illustrated at temperatures well below the polymer glass transition. While the PCCs colloid constituents display reversibility, the PCC material is strongly irreversible in the performed thermodynamic cycle. The effective elastic modulus enhances from 0.7 GPa for the pristine sample to 0.8 GPa, solely by pressure annealing at room temperature. [ <math> <semantics><mrow><mi>T</mi> <mo>,</mo> <mi>p</mi> <mo>]</mo></mrow> <annotation>$T,p]$</annotation></semantics> </math> annealing at higher temperatures leads to a maximum effective elastic modulus of 1.7 GPa, more than twice the value in the pristine sample. Above a cross-over pressure, <math> <semantics> <mrow><msub><mi>p</mi> <mrow><mi>c</mi> <mspace></mspace></mrow> </msub> <mrow><mo>(</mo> <mo>≈</mo></mrow> </mrow> <annotation>${{p}_{c\\ }}( \\approx $</annotation></semantics> </math> 725 bar at 348 K), the PCCs respond elastically and, hence, reversibly to pressure changes.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Engineering of Polymeric Colloidal Crystals by Temperature - Pressure Annealing.\",\"authors\":\"Jeena Varghese, Visnja Babacic, Mikolaj Pochylski, Jacek Gapinski, Hans-Juergen Butt, George Fytas, Bartlomiej Graczykowski\",\"doi\":\"10.1002/marc.202400668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymer colloidal crystals (PCCs) have been widely explored as acoustic and optical metamaterials and as templates for nanolithography. However, fabrication impurities and fragility of the self-assembled structures are critical bottlenecks for the device's efficiency and applications. We have demonstrated that temperature-assisted pressure [ <math> <semantics><mrow><mi>T</mi> <mo>,</mo> <mi>p</mi> <mo>]</mo></mrow> <annotation>$T,p]$</annotation></semantics> </math> annealing results in the mechanical strengthening of PCCs, which improves with the annealing temperature. Here, the enhancement of elastic properties and morphological features of self-assembled PCC's is evaluated using Brillouin light scattering and scanning electron microscopy. The pressure-induced effects on the vibrational modes of PCCs are also illustrated at temperatures well below the polymer glass transition. While the PCCs colloid constituents display reversibility, the PCC material is strongly irreversible in the performed thermodynamic cycle. The effective elastic modulus enhances from 0.7 GPa for the pristine sample to 0.8 GPa, solely by pressure annealing at room temperature. [ <math> <semantics><mrow><mi>T</mi> <mo>,</mo> <mi>p</mi> <mo>]</mo></mrow> <annotation>$T,p]$</annotation></semantics> </math> annealing at higher temperatures leads to a maximum effective elastic modulus of 1.7 GPa, more than twice the value in the pristine sample. Above a cross-over pressure, <math> <semantics> <mrow><msub><mi>p</mi> <mrow><mi>c</mi> <mspace></mspace></mrow> </msub> <mrow><mo>(</mo> <mo>≈</mo></mrow> </mrow> <annotation>${{p}_{c\\\\ }}( \\\\approx $</annotation></semantics> </math> 725 bar at 348 K), the PCCs respond elastically and, hence, reversibly to pressure changes.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400668\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400668","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
聚合物胶体晶体(PCCs)作为声学和光学超材料以及纳米光刻的模板已被广泛探索。然而,制造过程中的杂质和自组装结构的脆弱性是影响设备效率和应用的关键瓶颈。我们已经证明,温度辅助压力[ T , p ] $T,p]$退火会导致 PCC 的机械强化,并随着退火温度的升高而改善。在此,我们使用布里渊光散射和扫描电子显微镜评估了自组装 PCC 的弹性特性和形态特征的增强。此外,还说明了在远低于聚合物玻璃化转变温度时压力对 PCC 振动模式的影响。虽然 PCCs 胶体成分显示出可逆性,但在所执行的热力学循环中,PCC 材料具有很强的不可逆性。仅通过室温下的压力退火,有效弹性模量就从原始样品的 0.7 GPa 提高到了 0.8 GPa。[ T , p ] $T,p]$退火温度越高,有效弹性模量最大可达 1.7 GPa,是原始样品的两倍多。在交叉压力 p c ( ≈ ${{p}_{c\ }}( (大约 725 巴,348 K 时)以上,PCC 会对压力变化做出弹性响应,因此是可逆的。
Surface Engineering of Polymeric Colloidal Crystals by Temperature - Pressure Annealing.
Polymer colloidal crystals (PCCs) have been widely explored as acoustic and optical metamaterials and as templates for nanolithography. However, fabrication impurities and fragility of the self-assembled structures are critical bottlenecks for the device's efficiency and applications. We have demonstrated that temperature-assisted pressure [ annealing results in the mechanical strengthening of PCCs, which improves with the annealing temperature. Here, the enhancement of elastic properties and morphological features of self-assembled PCC's is evaluated using Brillouin light scattering and scanning electron microscopy. The pressure-induced effects on the vibrational modes of PCCs are also illustrated at temperatures well below the polymer glass transition. While the PCCs colloid constituents display reversibility, the PCC material is strongly irreversible in the performed thermodynamic cycle. The effective elastic modulus enhances from 0.7 GPa for the pristine sample to 0.8 GPa, solely by pressure annealing at room temperature. [ annealing at higher temperatures leads to a maximum effective elastic modulus of 1.7 GPa, more than twice the value in the pristine sample. Above a cross-over pressure, 725 bar at 348 K), the PCCs respond elastically and, hence, reversibly to pressure changes.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.