Christos I Efstathiou, Elizabeth Adams, Carlie J Coats, Robert Zelt, Mark Reed, John McGee, Kristen M Foley, Fahim I Sidi, David C Wong, Steven Fine, Saravanan Arunachalam
{"title":"为社区多尺度空气质量模型(CMAQ)5.3.3 版启用高性能云计算:性能评估及对用户社区的益处。","authors":"Christos I Efstathiou, Elizabeth Adams, Carlie J Coats, Robert Zelt, Mark Reed, John McGee, Kristen M Foley, Fahim I Sidi, David C Wong, Steven Fine, Saravanan Arunachalam","doi":"10.5194/gmd-17-7001-2024","DOIUrl":null,"url":null,"abstract":"<p><p>The Community Multiscale Air Quality Model (CMAQ) is a local- to hemispheric-scale numerical air quality modeling system developed by the U.S. Environmental Protection Agency (USEPA) and supported by the Community Modeling and Analysis System (CMAS) center. CMAQ is used for regulatory purposes by the USEPA program offices and state and local air agencies and is also widely used by the broader global research community to simulate and understand complex air quality processes and for computational environmental fate and transport and climate and health impact studies. Leveraging state-of-the-science cloud computing resources for high-performance computing (HPC) applications, CMAQ is now available as a fully tested, publicly available technology stack (HPC cluster and software stack) for two major cloud service providers (CSPs). Specifically, CMAQ configurations and supporting materials have been developed for use on their HPC clusters, including extensive online documentation, tutorials and guidelines to scale and optimize air quality simulations using their services. These resources allow modelers to rapidly bring together CMAQ, cloud-hosted datasets, and visualization and evaluation tools on ephemeral clusters that can be deployed quickly and reliably worldwide. Described here are considerations in CMAQ version 5.3.3 cloud use and the supported resources for each CSP, presented through a benchmark application suite that was developed as an example of a typical simulation for testing and verifying components of the modeling system. The outcomes of this effort are to provide findings from performing CMAQ simulations on the cloud using popular vendor-provided resources, to enable the user community to adapt this for their own needs, and to identify specific areas of potential optimization with respect to storage and compute architectures.</p>","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"17 18","pages":"7001-7027"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534021/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community.\",\"authors\":\"Christos I Efstathiou, Elizabeth Adams, Carlie J Coats, Robert Zelt, Mark Reed, John McGee, Kristen M Foley, Fahim I Sidi, David C Wong, Steven Fine, Saravanan Arunachalam\",\"doi\":\"10.5194/gmd-17-7001-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Community Multiscale Air Quality Model (CMAQ) is a local- to hemispheric-scale numerical air quality modeling system developed by the U.S. Environmental Protection Agency (USEPA) and supported by the Community Modeling and Analysis System (CMAS) center. CMAQ is used for regulatory purposes by the USEPA program offices and state and local air agencies and is also widely used by the broader global research community to simulate and understand complex air quality processes and for computational environmental fate and transport and climate and health impact studies. Leveraging state-of-the-science cloud computing resources for high-performance computing (HPC) applications, CMAQ is now available as a fully tested, publicly available technology stack (HPC cluster and software stack) for two major cloud service providers (CSPs). Specifically, CMAQ configurations and supporting materials have been developed for use on their HPC clusters, including extensive online documentation, tutorials and guidelines to scale and optimize air quality simulations using their services. These resources allow modelers to rapidly bring together CMAQ, cloud-hosted datasets, and visualization and evaluation tools on ephemeral clusters that can be deployed quickly and reliably worldwide. Described here are considerations in CMAQ version 5.3.3 cloud use and the supported resources for each CSP, presented through a benchmark application suite that was developed as an example of a typical simulation for testing and verifying components of the modeling system. The outcomes of this effort are to provide findings from performing CMAQ simulations on the cloud using popular vendor-provided resources, to enable the user community to adapt this for their own needs, and to identify specific areas of potential optimization with respect to storage and compute architectures.</p>\",\"PeriodicalId\":12799,\"journal\":{\"name\":\"Geoscientific Model Development\",\"volume\":\"17 18\",\"pages\":\"7001-7027\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534021/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Model Development\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/gmd-17-7001-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gmd-17-7001-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community.
The Community Multiscale Air Quality Model (CMAQ) is a local- to hemispheric-scale numerical air quality modeling system developed by the U.S. Environmental Protection Agency (USEPA) and supported by the Community Modeling and Analysis System (CMAS) center. CMAQ is used for regulatory purposes by the USEPA program offices and state and local air agencies and is also widely used by the broader global research community to simulate and understand complex air quality processes and for computational environmental fate and transport and climate and health impact studies. Leveraging state-of-the-science cloud computing resources for high-performance computing (HPC) applications, CMAQ is now available as a fully tested, publicly available technology stack (HPC cluster and software stack) for two major cloud service providers (CSPs). Specifically, CMAQ configurations and supporting materials have been developed for use on their HPC clusters, including extensive online documentation, tutorials and guidelines to scale and optimize air quality simulations using their services. These resources allow modelers to rapidly bring together CMAQ, cloud-hosted datasets, and visualization and evaluation tools on ephemeral clusters that can be deployed quickly and reliably worldwide. Described here are considerations in CMAQ version 5.3.3 cloud use and the supported resources for each CSP, presented through a benchmark application suite that was developed as an example of a typical simulation for testing and verifying components of the modeling system. The outcomes of this effort are to provide findings from performing CMAQ simulations on the cloud using popular vendor-provided resources, to enable the user community to adapt this for their own needs, and to identify specific areas of potential optimization with respect to storage and compute architectures.
期刊介绍:
Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:
* geoscientific model descriptions, from statistical models to box models to GCMs;
* development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;
* new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;
* papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;
* model experiment descriptions, including experimental details and project protocols;
* full evaluations of previously published models.