产前母体应激通过升高糖皮质激素水平抑制胚胎神经发生

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Endocrinology Pub Date : 2024-10-30 DOI:10.1210/endocr/bqae150
Shujie Xu, Junzhu Shi, Yao Shen, Xianlong Chen, Ghazal Pourbozorg, Guang Wang, Xuesong Yang, Xin Cheng
{"title":"产前母体应激通过升高糖皮质激素水平抑制胚胎神经发生","authors":"Shujie Xu, Junzhu Shi, Yao Shen, Xianlong Chen, Ghazal Pourbozorg, Guang Wang, Xuesong Yang, Xin Cheng","doi":"10.1210/endocr/bqae150","DOIUrl":null,"url":null,"abstract":"<p><p>Although it is known that prenatal maternal stress (PNMS) has a negative influence on nervous system development in offspring, there is no conclusive evidence clarifying its impact on early neurogenesis during development. In this study, we established a chick embryo model to investigate how PNMS affects early neurogenesis by mimicking an intrauterine environment with elevated dexamethasone levels. The results showed that dexamethasone-mimicked PNMS significantly suppressed the development of gastrula embryos and increased the risks of neural tube defects and cranial deformity. Using immunofluorescence staining and Western blots to evaluate the expression levels of pHIS3 and PCNA/Sox2, we found that PNMS significantly inhibited the proliferation of neural progenitor cells and that the downregulation of TGF-β signaling pathway might be responsible for the inhibition. Furthermore, immunofluorescence staining and Western blots manifested that PNMS could suppress the differentiation of neural progenitor cells to neuronal lineages, but promote them to transform into neuroglial cells, which might be due to the restriction of expressions of key genes (BMP4, SHH, Wnt3a, Slug, and Msx1) related to neural differentiation. In summary, our data reveal that PNMS dramatically impacts the earliest stages of neural development, thereby greatly increasing the risk of physical and mental health problems in childhood or adulthood.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prenatal Maternal Stress Suppresses Embryonic Neurogenesis via Elevated Glucocorticoid Levels.\",\"authors\":\"Shujie Xu, Junzhu Shi, Yao Shen, Xianlong Chen, Ghazal Pourbozorg, Guang Wang, Xuesong Yang, Xin Cheng\",\"doi\":\"10.1210/endocr/bqae150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although it is known that prenatal maternal stress (PNMS) has a negative influence on nervous system development in offspring, there is no conclusive evidence clarifying its impact on early neurogenesis during development. In this study, we established a chick embryo model to investigate how PNMS affects early neurogenesis by mimicking an intrauterine environment with elevated dexamethasone levels. The results showed that dexamethasone-mimicked PNMS significantly suppressed the development of gastrula embryos and increased the risks of neural tube defects and cranial deformity. Using immunofluorescence staining and Western blots to evaluate the expression levels of pHIS3 and PCNA/Sox2, we found that PNMS significantly inhibited the proliferation of neural progenitor cells and that the downregulation of TGF-β signaling pathway might be responsible for the inhibition. Furthermore, immunofluorescence staining and Western blots manifested that PNMS could suppress the differentiation of neural progenitor cells to neuronal lineages, but promote them to transform into neuroglial cells, which might be due to the restriction of expressions of key genes (BMP4, SHH, Wnt3a, Slug, and Msx1) related to neural differentiation. In summary, our data reveal that PNMS dramatically impacts the earliest stages of neural development, thereby greatly increasing the risk of physical and mental health problems in childhood or adulthood.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqae150\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae150","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们知道产前母体应激(PNMS)对后代神经系统的发育有负面影响,但还没有确凿的证据表明产前母体应激对发育过程中的早期神经发生有影响。在本研究中,我们建立了一个小鸡胚胎模型,通过模拟高水平地塞米松(Dex)的宫内环境来研究 PNMS 如何影响早期神经发生。结果表明,模拟地塞米松的 PNMS 会显著抑制胃管胚胎的发育,增加神经管缺陷和颅骨畸形的风险。通过免疫荧光染色和Western印迹检测pHIS3、PCNA/Sox2的表达水平,我们发现PNMS显著抑制了神经祖细胞的增殖,而TGFβ信号通路的下调可能是导致这种抑制的原因。此外,免疫荧光染色和Western印迹表明,PNMS可抑制神经祖细胞向神经元系分化,但促进其向神经胶质细胞转化,这可能是与神经分化相关的关键基因(BMP4、SHH、Wnt3a、Slug和Msx1)表达受限所致。总之,我们的数据揭示了 PNMS 会显著影响神经发育的最初阶段,从而大大增加儿童期或成年期出现身心健康问题的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prenatal Maternal Stress Suppresses Embryonic Neurogenesis via Elevated Glucocorticoid Levels.

Although it is known that prenatal maternal stress (PNMS) has a negative influence on nervous system development in offspring, there is no conclusive evidence clarifying its impact on early neurogenesis during development. In this study, we established a chick embryo model to investigate how PNMS affects early neurogenesis by mimicking an intrauterine environment with elevated dexamethasone levels. The results showed that dexamethasone-mimicked PNMS significantly suppressed the development of gastrula embryos and increased the risks of neural tube defects and cranial deformity. Using immunofluorescence staining and Western blots to evaluate the expression levels of pHIS3 and PCNA/Sox2, we found that PNMS significantly inhibited the proliferation of neural progenitor cells and that the downregulation of TGF-β signaling pathway might be responsible for the inhibition. Furthermore, immunofluorescence staining and Western blots manifested that PNMS could suppress the differentiation of neural progenitor cells to neuronal lineages, but promote them to transform into neuroglial cells, which might be due to the restriction of expressions of key genes (BMP4, SHH, Wnt3a, Slug, and Msx1) related to neural differentiation. In summary, our data reveal that PNMS dramatically impacts the earliest stages of neural development, thereby greatly increasing the risk of physical and mental health problems in childhood or adulthood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
期刊最新文献
Mechanisms of Low Temperature-Induced Growth Hormone Resistance via TRPA1 Channel Activation in Male Nile Tilapia. Estrogen receptor signaling alters sperm DNA methylation landscape in adult male rats. Glutamatergic Input from Arcuate Nucleus Kiss1 Neurons to Preoptic Kiss1 Neurons is Required for LH Surge in Female Mice. Maternal exposure to ozone during implantation promotes a feminized transcriptomic profile in the male adolescent liver. Interaction of B0AT1 deficiency and diet on metabolic function and diabetes incidence in male NOD mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1