{"title":"siRNADiscovery:通过深度 RNA 序列分析预测 siRNA 药效的图神经网络。","authors":"Rongzhuo Long, Ziyu Guo, Da Han, Boxiang Liu, Xudong Yuan, Guangyong Chen, Pheng-Ann Heng, Liang Zhang","doi":"10.1093/bib/bbae563","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical adoption of small interfering RNAs (siRNAs) has prompted the development of various computational strategies for siRNA design, from traditional data analysis to advanced machine learning techniques. However, previous studies have inadequately considered the full complexity of the siRNA silencing mechanism, neglecting critical elements such as siRNA positioning on mRNA, RNA base-pairing probabilities, and RNA-AGO2 interactions, thereby limiting the insight and accuracy of existing models. Here, we introduce siRNADiscovery, a Graph Neural Network (GNN) framework that leverages both non-empirical and empirical rule-based features of siRNA and mRNA to effectively capture the complex dynamics of gene silencing. On multiple internal datasets, siRNADiscovery achieves state-of-the-art performance. Significantly, siRNADiscovery also outperforms existing methodologies in in vitro studies and on an externally validated dataset. Additionally, we develop a new data-splitting methodology that addresses the data leakage issue, a frequently overlooked problem in previous studies, ensuring the robustness and stability of our model under various experimental settings. Through rigorous testing, siRNADiscovery has demonstrated remarkable predictive accuracy and robustness, making significant contributions to the field of gene silencing. Furthermore, our approach to redefining data-splitting standards aims to set new benchmarks for future research in the domain of predictive biological modeling for siRNA.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539000/pdf/","citationCount":"0","resultStr":"{\"title\":\"siRNADiscovery: a graph neural network for siRNA efficacy prediction via deep RNA sequence analysis.\",\"authors\":\"Rongzhuo Long, Ziyu Guo, Da Han, Boxiang Liu, Xudong Yuan, Guangyong Chen, Pheng-Ann Heng, Liang Zhang\",\"doi\":\"10.1093/bib/bbae563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical adoption of small interfering RNAs (siRNAs) has prompted the development of various computational strategies for siRNA design, from traditional data analysis to advanced machine learning techniques. However, previous studies have inadequately considered the full complexity of the siRNA silencing mechanism, neglecting critical elements such as siRNA positioning on mRNA, RNA base-pairing probabilities, and RNA-AGO2 interactions, thereby limiting the insight and accuracy of existing models. Here, we introduce siRNADiscovery, a Graph Neural Network (GNN) framework that leverages both non-empirical and empirical rule-based features of siRNA and mRNA to effectively capture the complex dynamics of gene silencing. On multiple internal datasets, siRNADiscovery achieves state-of-the-art performance. Significantly, siRNADiscovery also outperforms existing methodologies in in vitro studies and on an externally validated dataset. Additionally, we develop a new data-splitting methodology that addresses the data leakage issue, a frequently overlooked problem in previous studies, ensuring the robustness and stability of our model under various experimental settings. Through rigorous testing, siRNADiscovery has demonstrated remarkable predictive accuracy and robustness, making significant contributions to the field of gene silencing. Furthermore, our approach to redefining data-splitting standards aims to set new benchmarks for future research in the domain of predictive biological modeling for siRNA.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539000/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae563\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae563","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
siRNADiscovery: a graph neural network for siRNA efficacy prediction via deep RNA sequence analysis.
The clinical adoption of small interfering RNAs (siRNAs) has prompted the development of various computational strategies for siRNA design, from traditional data analysis to advanced machine learning techniques. However, previous studies have inadequately considered the full complexity of the siRNA silencing mechanism, neglecting critical elements such as siRNA positioning on mRNA, RNA base-pairing probabilities, and RNA-AGO2 interactions, thereby limiting the insight and accuracy of existing models. Here, we introduce siRNADiscovery, a Graph Neural Network (GNN) framework that leverages both non-empirical and empirical rule-based features of siRNA and mRNA to effectively capture the complex dynamics of gene silencing. On multiple internal datasets, siRNADiscovery achieves state-of-the-art performance. Significantly, siRNADiscovery also outperforms existing methodologies in in vitro studies and on an externally validated dataset. Additionally, we develop a new data-splitting methodology that addresses the data leakage issue, a frequently overlooked problem in previous studies, ensuring the robustness and stability of our model under various experimental settings. Through rigorous testing, siRNADiscovery has demonstrated remarkable predictive accuracy and robustness, making significant contributions to the field of gene silencing. Furthermore, our approach to redefining data-splitting standards aims to set new benchmarks for future research in the domain of predictive biological modeling for siRNA.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.