Xiaoli Du, Jiawei Zhou, Yi Zhou, Yulong Chen, Yanhua Kang, Dongjiu Zhao, Xiang-Yang Ye, Liwei Wang, Tian Xie, Hang Zhang
{"title":"PARP7i 临床候选药物 RBN-2397 通过调节巨噬细胞中与干扰素-β 相关的先天性免疫反应而发挥抗病毒活性。","authors":"Xiaoli Du, Jiawei Zhou, Yi Zhou, Yulong Chen, Yanhua Kang, Dongjiu Zhao, Xiang-Yang Ye, Liwei Wang, Tian Xie, Hang Zhang","doi":"10.1002/ddr.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Polyadenosine diphosphate-ribose polymerase 7 (PARP7) acts as a suppressor of the type I interferon (IFN) signaling pathway via suppressing TANK-binding protein 1 (TBK1). Research study indicates that inhibition of PARP7 could potentially regulate tumor immunity. However, the effect of PARP7 inhibition on innate antiviral immunity in macrophages as well as the underlying mechanism have not been demonstrated else well. We report herein that PARP7 inhibitor clinical candidate RBN-2397 could augment type I interferon (IFN-I) production in macrophages by elevating retinoic acid-inducible gene I (RIG-I) and stimulator of interferon genes (STING) signaling pathways. Treatment with RBN-2397 leads to increased pattern recognition ligands-induced interferon-β production in primary bone marrow-derived macrophages (BMDM) and RAW264.7 cells. Additionally, RBN-2397 suppresses viral replication efficiency in macrophages infected by vesicular stomatitis virus (VSV) and amplifies the expression of interferon-stimulated chemokine genes (ISGs). Mechanistically, RBN-2397 promotes TBK1 phosphorylation, consequently leading to the amplified activation of RIG-I and STING signaling pathways. Furthermore, RBN-2397 enhances the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT2 induced by IFN-α/β and the expression of chemokine genes in macrophages in response to IFN stimulation. In vivo experiments demonstrated that RBN-2397 enhances innate antiviral immunity in mice infected with VSV, resulting in increased serum IFN-β levels, reduced viral loads, and alleviated pulmonary inflammatory responses of the VSV-infected mice. In conclusion, our findings highlight the potential of RBN-2397 as a promising antiviral therapeutic agent for enhancing the IFN-relative antiviral immune defense in host.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARP7i Clinical Candidate RBN-2397 Exerts Antiviral Activity by Modulating Interferon-β Associated Innate Immune Response in Macrophages\",\"authors\":\"Xiaoli Du, Jiawei Zhou, Yi Zhou, Yulong Chen, Yanhua Kang, Dongjiu Zhao, Xiang-Yang Ye, Liwei Wang, Tian Xie, Hang Zhang\",\"doi\":\"10.1002/ddr.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Polyadenosine diphosphate-ribose polymerase 7 (PARP7) acts as a suppressor of the type I interferon (IFN) signaling pathway via suppressing TANK-binding protein 1 (TBK1). Research study indicates that inhibition of PARP7 could potentially regulate tumor immunity. However, the effect of PARP7 inhibition on innate antiviral immunity in macrophages as well as the underlying mechanism have not been demonstrated else well. We report herein that PARP7 inhibitor clinical candidate RBN-2397 could augment type I interferon (IFN-I) production in macrophages by elevating retinoic acid-inducible gene I (RIG-I) and stimulator of interferon genes (STING) signaling pathways. Treatment with RBN-2397 leads to increased pattern recognition ligands-induced interferon-β production in primary bone marrow-derived macrophages (BMDM) and RAW264.7 cells. Additionally, RBN-2397 suppresses viral replication efficiency in macrophages infected by vesicular stomatitis virus (VSV) and amplifies the expression of interferon-stimulated chemokine genes (ISGs). Mechanistically, RBN-2397 promotes TBK1 phosphorylation, consequently leading to the amplified activation of RIG-I and STING signaling pathways. Furthermore, RBN-2397 enhances the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT2 induced by IFN-α/β and the expression of chemokine genes in macrophages in response to IFN stimulation. In vivo experiments demonstrated that RBN-2397 enhances innate antiviral immunity in mice infected with VSV, resulting in increased serum IFN-β levels, reduced viral loads, and alleviated pulmonary inflammatory responses of the VSV-infected mice. In conclusion, our findings highlight the potential of RBN-2397 as a promising antiviral therapeutic agent for enhancing the IFN-relative antiviral immune defense in host.</p>\\n </div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70013\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
PARP7i Clinical Candidate RBN-2397 Exerts Antiviral Activity by Modulating Interferon-β Associated Innate Immune Response in Macrophages
Polyadenosine diphosphate-ribose polymerase 7 (PARP7) acts as a suppressor of the type I interferon (IFN) signaling pathway via suppressing TANK-binding protein 1 (TBK1). Research study indicates that inhibition of PARP7 could potentially regulate tumor immunity. However, the effect of PARP7 inhibition on innate antiviral immunity in macrophages as well as the underlying mechanism have not been demonstrated else well. We report herein that PARP7 inhibitor clinical candidate RBN-2397 could augment type I interferon (IFN-I) production in macrophages by elevating retinoic acid-inducible gene I (RIG-I) and stimulator of interferon genes (STING) signaling pathways. Treatment with RBN-2397 leads to increased pattern recognition ligands-induced interferon-β production in primary bone marrow-derived macrophages (BMDM) and RAW264.7 cells. Additionally, RBN-2397 suppresses viral replication efficiency in macrophages infected by vesicular stomatitis virus (VSV) and amplifies the expression of interferon-stimulated chemokine genes (ISGs). Mechanistically, RBN-2397 promotes TBK1 phosphorylation, consequently leading to the amplified activation of RIG-I and STING signaling pathways. Furthermore, RBN-2397 enhances the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT2 induced by IFN-α/β and the expression of chemokine genes in macrophages in response to IFN stimulation. In vivo experiments demonstrated that RBN-2397 enhances innate antiviral immunity in mice infected with VSV, resulting in increased serum IFN-β levels, reduced viral loads, and alleviated pulmonary inflammatory responses of the VSV-infected mice. In conclusion, our findings highlight the potential of RBN-2397 as a promising antiviral therapeutic agent for enhancing the IFN-relative antiviral immune defense in host.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.