保护视网膜免受损伤的加巴喷丁胆固醇基纳米颗粒的制备和表征。

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Frontiers in Chemistry Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.3389/fchem.2024.1449380
Hatem I Mokhtar, Dina M Khodeer, Sharifa Alzahrani, Mona Qushawy, Reem Alshaman, Nehal M Elsherbiny, Esam Sayed Ahmed, Esam Ghanem Abu El Wafa, Mohamed K El-Kherbetawy, Ahmed R Gardouh, Sawsan A Zaitone
{"title":"保护视网膜免受损伤的加巴喷丁胆固醇基纳米颗粒的制备和表征。","authors":"Hatem I Mokhtar, Dina M Khodeer, Sharifa Alzahrani, Mona Qushawy, Reem Alshaman, Nehal M Elsherbiny, Esam Sayed Ahmed, Esam Ghanem Abu El Wafa, Mohamed K El-Kherbetawy, Ahmed R Gardouh, Sawsan A Zaitone","doi":"10.3389/fchem.2024.1449380","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to prepare cholesterol and stearic acid-based solid lipid nanoparticles of gabapentin (GAB-SLNs) for protection against streptozotocin (STZ)-induced retinal injury in rats.</p><p><strong>Methods: </strong>We prepared four preparations of GAB-SLNs using a hot high-shear homogenization ultrasonication process, and the best formulation was selected and tested for biological activity. The retinal injury was brought in male adult albino rats while gabapentin doses continued for 6 weeks. Six groups of rats were assigned as the vehicle, diabetic, diabetic + gabapentin (10-20 mg/kg), and diabetic + GAB-SLNs (10-20 mg/kg). GAB-SLN#2 was selected as the optimized formulation with high entrapment efficacy (EE%, 98.64% ± 1.97%), small particle size (185.65 ± 2.41 nm), high negative Zeta potential (-32.18 ± 0.98 mV), low polydispersity index (0.28 ± 0.02), and elevated drug release (99.27% ± 3.48%). The TEM image of GAB-SLN#2 revealed a smooth surface with a spherical shape.</p><p><strong>Results: </strong>GAB-SLNs provided greater protection against retinal injury than free gabapentin as indicated by the histopathology data which demonstrated more organization of retinal layers and less degeneration in ganglion cell layer in rats treated with GAB-SLN#2. Further, GAB-SLN#2 reduced the inflammatory proteins (IL-6/JAK2/STAT3) and vascular endothelial growth factor (VEGF).</p><p><strong>Conclusion: </strong>The preparation of GAB-SLNs enhanced the physical properties of gabapentin and improved its biological activity as a neuroprotectant. Further studies are warranted to validate this technique for the use of oral gabapentin in other neurological disorders.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1449380"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Formulation and characterization of cholesterol-based nanoparticles of gabapentin protecting from retinal injury.\",\"authors\":\"Hatem I Mokhtar, Dina M Khodeer, Sharifa Alzahrani, Mona Qushawy, Reem Alshaman, Nehal M Elsherbiny, Esam Sayed Ahmed, Esam Ghanem Abu El Wafa, Mohamed K El-Kherbetawy, Ahmed R Gardouh, Sawsan A Zaitone\",\"doi\":\"10.3389/fchem.2024.1449380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This study aimed to prepare cholesterol and stearic acid-based solid lipid nanoparticles of gabapentin (GAB-SLNs) for protection against streptozotocin (STZ)-induced retinal injury in rats.</p><p><strong>Methods: </strong>We prepared four preparations of GAB-SLNs using a hot high-shear homogenization ultrasonication process, and the best formulation was selected and tested for biological activity. The retinal injury was brought in male adult albino rats while gabapentin doses continued for 6 weeks. Six groups of rats were assigned as the vehicle, diabetic, diabetic + gabapentin (10-20 mg/kg), and diabetic + GAB-SLNs (10-20 mg/kg). GAB-SLN#2 was selected as the optimized formulation with high entrapment efficacy (EE%, 98.64% ± 1.97%), small particle size (185.65 ± 2.41 nm), high negative Zeta potential (-32.18 ± 0.98 mV), low polydispersity index (0.28 ± 0.02), and elevated drug release (99.27% ± 3.48%). The TEM image of GAB-SLN#2 revealed a smooth surface with a spherical shape.</p><p><strong>Results: </strong>GAB-SLNs provided greater protection against retinal injury than free gabapentin as indicated by the histopathology data which demonstrated more organization of retinal layers and less degeneration in ganglion cell layer in rats treated with GAB-SLN#2. Further, GAB-SLN#2 reduced the inflammatory proteins (IL-6/JAK2/STAT3) and vascular endothelial growth factor (VEGF).</p><p><strong>Conclusion: </strong>The preparation of GAB-SLNs enhanced the physical properties of gabapentin and improved its biological activity as a neuroprotectant. Further studies are warranted to validate this technique for the use of oral gabapentin in other neurological disorders.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"12 \",\"pages\":\"1449380\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2024.1449380\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1449380","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

引言:本研究旨在制备基于胆固醇和硬脂酸的加巴喷丁固体脂质纳米颗粒(GAB-SLNs),以防止链脲佐菌素(STZ)诱导的大鼠视网膜损伤:我们采用热高剪切匀浆超声工艺制备了四种 GAB-SLNs 制剂,并选择了最佳制剂进行生物活性测试。对雄性成年白化大鼠进行视网膜损伤,同时持续服用加巴喷丁 6 周。六组大鼠被分配为载体组、糖尿病组、糖尿病+加巴喷丁(10-20 mg/kg)组和糖尿病+GAB-SLNs(10-20 mg/kg)组。GAB-SLN#2 被选为优化制剂,它具有较高的夹持效力(EE%,98.64% ± 1.97%)、较小的粒径(185.65 ± 2.41 nm)、较高的负 Zeta 电位(-32.18 ± 0.98 mV)、较低的多分散指数(0.28 ± 0.02)和较高的药物释放率(99.27% ± 3.48%)。GAB-SLN#2 的 TEM 图像显示其表面光滑,呈球形:组织病理学数据表明,GAB-SLNs 比游离加巴喷丁能更好地保护大鼠免受视网膜损伤,GAB-SLN#2 治疗后的大鼠视网膜层组织更多,神经节细胞层退化更少。此外,GAB-SLN#2 还能减少炎症蛋白(IL-6/JAK2/STAT3)和血管内皮生长因子(VEGF):结论:GAB-SLNs 的制备增强了加巴喷丁的物理性质,提高了其作为神经保护剂的生物活性。我们有必要开展进一步研究,以验证该技术在其他神经系统疾病中口服加巴喷丁的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formulation and characterization of cholesterol-based nanoparticles of gabapentin protecting from retinal injury.

Introduction: This study aimed to prepare cholesterol and stearic acid-based solid lipid nanoparticles of gabapentin (GAB-SLNs) for protection against streptozotocin (STZ)-induced retinal injury in rats.

Methods: We prepared four preparations of GAB-SLNs using a hot high-shear homogenization ultrasonication process, and the best formulation was selected and tested for biological activity. The retinal injury was brought in male adult albino rats while gabapentin doses continued for 6 weeks. Six groups of rats were assigned as the vehicle, diabetic, diabetic + gabapentin (10-20 mg/kg), and diabetic + GAB-SLNs (10-20 mg/kg). GAB-SLN#2 was selected as the optimized formulation with high entrapment efficacy (EE%, 98.64% ± 1.97%), small particle size (185.65 ± 2.41 nm), high negative Zeta potential (-32.18 ± 0.98 mV), low polydispersity index (0.28 ± 0.02), and elevated drug release (99.27% ± 3.48%). The TEM image of GAB-SLN#2 revealed a smooth surface with a spherical shape.

Results: GAB-SLNs provided greater protection against retinal injury than free gabapentin as indicated by the histopathology data which demonstrated more organization of retinal layers and less degeneration in ganglion cell layer in rats treated with GAB-SLN#2. Further, GAB-SLN#2 reduced the inflammatory proteins (IL-6/JAK2/STAT3) and vascular endothelial growth factor (VEGF).

Conclusion: The preparation of GAB-SLNs enhanced the physical properties of gabapentin and improved its biological activity as a neuroprotectant. Further studies are warranted to validate this technique for the use of oral gabapentin in other neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
期刊最新文献
Emerging NO2 gas sensing on substitutionally doped Fe on NiWO4 SCES insulators. Supramolecular systems and their connection with metal-organic structures. Carborane-based BODIPY dyes: synthesis, structural analysis, photophysics and applications. Flame retardants of the future: biobased, organophosphorus, reactive or oligomeric. Laser-induced graphene gas sensors for environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1