{"title":"miR-140-3p 靶向的 UBE2C 通过 PI3K/AKT 信号通路促进骨肉瘤的进展。","authors":"Wenze Huang, Yan Zhou, Jing Ren, Chunfa Chen","doi":"10.1080/10799893.2024.2423100","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>UBE2C was reported to play carcinogenic effects in diverse cancers. However, the role of UBE2C in osteosarcoma was poorly understood, and its functional mechanisms were not fully clarified.</p><p><strong>Methods: </strong>RT-qPCR was used to assess the expression of UBE2C mRNA and miR-140-3p, and western blot technique was used to examine the UBE2C protein and PI3K/AKT pathway-associated proteins. CCK-8 test was applied to measure cell proliferation, and wound healing assay were used to measure migration. Using animal studies, the function of UBE2C <i>in vivo</i> was evaluated. Dual-luciferase reporter assay was used to confirm the potential interaction among UBE2C and miR-140-3p.</p><p><strong>Results: </strong>In osteosarcoma cells as well as tumor samples, UBE2C was strongly expressed. Osteosarcoma cell proliferation as well as cell migration were inhibited by UBE2C knockdown, and PI3K/AKT signaling activity was diminished. In addition, UBE2C knockdown impeded tumor growth in animal models. UBE2C expression was lessened by miR-140-3p as miR-140-3p targets it. UBE2C is overexpressed which promote osteosarcoma proliferation as well as migration, and strengthened the PI3K/AKT signaling activity, while forced miR-140-3p expression partially abolished these effects.</p><p><strong>Conclusion: </strong>UBE2C, targeted by miR-140-3p, drove carcinogenic effects in osteosarcoma through activating the PI3K/AKT pathway.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":" ","pages":"107-114"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UBE2C, targeted by miR-140-3p, promotes the progression of osteosarcoma via PI3K/AKT signaling pathway.\",\"authors\":\"Wenze Huang, Yan Zhou, Jing Ren, Chunfa Chen\",\"doi\":\"10.1080/10799893.2024.2423100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>UBE2C was reported to play carcinogenic effects in diverse cancers. However, the role of UBE2C in osteosarcoma was poorly understood, and its functional mechanisms were not fully clarified.</p><p><strong>Methods: </strong>RT-qPCR was used to assess the expression of UBE2C mRNA and miR-140-3p, and western blot technique was used to examine the UBE2C protein and PI3K/AKT pathway-associated proteins. CCK-8 test was applied to measure cell proliferation, and wound healing assay were used to measure migration. Using animal studies, the function of UBE2C <i>in vivo</i> was evaluated. Dual-luciferase reporter assay was used to confirm the potential interaction among UBE2C and miR-140-3p.</p><p><strong>Results: </strong>In osteosarcoma cells as well as tumor samples, UBE2C was strongly expressed. Osteosarcoma cell proliferation as well as cell migration were inhibited by UBE2C knockdown, and PI3K/AKT signaling activity was diminished. In addition, UBE2C knockdown impeded tumor growth in animal models. UBE2C expression was lessened by miR-140-3p as miR-140-3p targets it. UBE2C is overexpressed which promote osteosarcoma proliferation as well as migration, and strengthened the PI3K/AKT signaling activity, while forced miR-140-3p expression partially abolished these effects.</p><p><strong>Conclusion: </strong>UBE2C, targeted by miR-140-3p, drove carcinogenic effects in osteosarcoma through activating the PI3K/AKT pathway.</p>\",\"PeriodicalId\":16962,\"journal\":{\"name\":\"Journal of Receptors and Signal Transduction\",\"volume\":\" \",\"pages\":\"107-114\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Receptors and Signal Transduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10799893.2024.2423100\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2024.2423100","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
UBE2C, targeted by miR-140-3p, promotes the progression of osteosarcoma via PI3K/AKT signaling pathway.
Background: UBE2C was reported to play carcinogenic effects in diverse cancers. However, the role of UBE2C in osteosarcoma was poorly understood, and its functional mechanisms were not fully clarified.
Methods: RT-qPCR was used to assess the expression of UBE2C mRNA and miR-140-3p, and western blot technique was used to examine the UBE2C protein and PI3K/AKT pathway-associated proteins. CCK-8 test was applied to measure cell proliferation, and wound healing assay were used to measure migration. Using animal studies, the function of UBE2C in vivo was evaluated. Dual-luciferase reporter assay was used to confirm the potential interaction among UBE2C and miR-140-3p.
Results: In osteosarcoma cells as well as tumor samples, UBE2C was strongly expressed. Osteosarcoma cell proliferation as well as cell migration were inhibited by UBE2C knockdown, and PI3K/AKT signaling activity was diminished. In addition, UBE2C knockdown impeded tumor growth in animal models. UBE2C expression was lessened by miR-140-3p as miR-140-3p targets it. UBE2C is overexpressed which promote osteosarcoma proliferation as well as migration, and strengthened the PI3K/AKT signaling activity, while forced miR-140-3p expression partially abolished these effects.
Conclusion: UBE2C, targeted by miR-140-3p, drove carcinogenic effects in osteosarcoma through activating the PI3K/AKT pathway.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.