用于伤口敷料的富氯化镁聚氨酯纳米纤维贴片的特性和性能评估。

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY International Journal of Nanomedicine Pub Date : 2024-11-01 eCollection Date: 2024-01-01 DOI:10.2147/IJN.S460921
Mohan Prasath Mani, Hemanth Ponnambalath Mohanadas, Ahmad Athif Mohd Faudzi, Ahmad Fauzi Ismail, Nick Tucker, Shahrol Mohamaddan, Manikandan Ayyar, Tamilselvam Palanisamy, Rajasekar Rathanasamy, Saravana Kumar Jaganathan
{"title":"用于伤口敷料的富氯化镁聚氨酯纳米纤维贴片的特性和性能评估。","authors":"Mohan Prasath Mani, Hemanth Ponnambalath Mohanadas, Ahmad Athif Mohd Faudzi, Ahmad Fauzi Ismail, Nick Tucker, Shahrol Mohamaddan, Manikandan Ayyar, Tamilselvam Palanisamy, Rajasekar Rathanasamy, Saravana Kumar Jaganathan","doi":"10.2147/IJN.S460921","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Wound patches are essential for wound healing, yet developing patches with enhanced mechanical and biological properties remains challenging. This study aimed to enhance the mechanical and biological properties of polyurethane (PU) by incorporating magnesium chloride (MgCl<sub>2</sub>) into the patch.</p><p><strong>Methodology: </strong>The composite patch was fabricated using the electrospinning technique, producing nanofibers from a mixture of PU and MgCl<sub>2</sub> solutions. The electrospun PU/MgCl<sub>2</sub> was then evaluated for various physico-chemical characteristics and biological properties to determine its suitability for wound healing applications.</p><p><strong>Results: </strong>Tensile strength testing showed that the mechanical properties of the composite patch (10.98 ± 0.18) were significantly improved compared to pristine PU (6.66 ± 0.44). Field scanning electron microscopy (FESEM) revealed that the electrospun nanofiber patch had a smooth, randomly oriented non-woven structure (PU - 830 ± 145 nm and PU/MgCl<sub>2</sub> - 508 ± 151 nm). Fourier infrared spectroscopy (FTIR) confirmed magnesium chloride's presence in the polyurethane matrix via strong hydrogen bond formation. Blood compatibility studies using coagulation assays, including activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolysis assays, demonstrated improved blood compatibility of the composite patch (APTT - 174 ± 0.5 s, PT - 91 ± 0.8s, and Hemolytic percentage - 1.78%) compared to pristine PU (APTT - 152 ± 1.2s, PT - 73 ± 1.7s, and Hemolytic percentage - 2.55%). Antimicrobial testing showed an enhanced zone of inhibition (Staphylococcus aureus - 21.5 ± 0.5 mm and Escherichia coli - 27.5 ± 2.5 mm) compared to the control, while cell viability assays confirmed the non-cytotoxic nature of the developed patches on fibroblast cells.</p><p><strong>Conclusion: </strong>The study concludes that adding MgCl<sub>2</sub> to PU significantly improves the mechanical, biological, and biocompatibility properties of the patch. This composite patch shows potential for future wound healing applications, with further studies needed to validate its efficacy in-vivo.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537197/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization and Performance Evaluation of Magnesium Chloride-Enriched Polyurethane Nanofiber Patches for Wound Dressings.\",\"authors\":\"Mohan Prasath Mani, Hemanth Ponnambalath Mohanadas, Ahmad Athif Mohd Faudzi, Ahmad Fauzi Ismail, Nick Tucker, Shahrol Mohamaddan, Manikandan Ayyar, Tamilselvam Palanisamy, Rajasekar Rathanasamy, Saravana Kumar Jaganathan\",\"doi\":\"10.2147/IJN.S460921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Wound patches are essential for wound healing, yet developing patches with enhanced mechanical and biological properties remains challenging. This study aimed to enhance the mechanical and biological properties of polyurethane (PU) by incorporating magnesium chloride (MgCl<sub>2</sub>) into the patch.</p><p><strong>Methodology: </strong>The composite patch was fabricated using the electrospinning technique, producing nanofibers from a mixture of PU and MgCl<sub>2</sub> solutions. The electrospun PU/MgCl<sub>2</sub> was then evaluated for various physico-chemical characteristics and biological properties to determine its suitability for wound healing applications.</p><p><strong>Results: </strong>Tensile strength testing showed that the mechanical properties of the composite patch (10.98 ± 0.18) were significantly improved compared to pristine PU (6.66 ± 0.44). Field scanning electron microscopy (FESEM) revealed that the electrospun nanofiber patch had a smooth, randomly oriented non-woven structure (PU - 830 ± 145 nm and PU/MgCl<sub>2</sub> - 508 ± 151 nm). Fourier infrared spectroscopy (FTIR) confirmed magnesium chloride's presence in the polyurethane matrix via strong hydrogen bond formation. Blood compatibility studies using coagulation assays, including activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolysis assays, demonstrated improved blood compatibility of the composite patch (APTT - 174 ± 0.5 s, PT - 91 ± 0.8s, and Hemolytic percentage - 1.78%) compared to pristine PU (APTT - 152 ± 1.2s, PT - 73 ± 1.7s, and Hemolytic percentage - 2.55%). Antimicrobial testing showed an enhanced zone of inhibition (Staphylococcus aureus - 21.5 ± 0.5 mm and Escherichia coli - 27.5 ± 2.5 mm) compared to the control, while cell viability assays confirmed the non-cytotoxic nature of the developed patches on fibroblast cells.</p><p><strong>Conclusion: </strong>The study concludes that adding MgCl<sub>2</sub> to PU significantly improves the mechanical, biological, and biocompatibility properties of the patch. This composite patch shows potential for future wound healing applications, with further studies needed to validate its efficacy in-vivo.</p>\",\"PeriodicalId\":14084,\"journal\":{\"name\":\"International Journal of Nanomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537197/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJN.S460921\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S460921","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:伤口贴片对伤口愈合至关重要,但开发具有更强机械和生物特性的贴片仍具有挑战性。本研究旨在通过在补片中加入氯化镁(MgCl2)来增强聚氨酯(PU)的机械和生物特性:方法:使用电纺丝技术制造复合贴片,从聚氨酯和氯化镁溶液的混合物中产生纳米纤维。然后评估了电纺聚氨酯/氯化镁的各种物理化学特性和生物特性,以确定其是否适合伤口愈合应用:结果:拉伸强度测试表明,与原始聚氨酯(6.66 ± 0.44)相比,复合贴片的机械性能(10.98 ± 0.18)明显提高。现场扫描电子显微镜(FESEM)显示,电纺纳米纤维贴片具有平滑、随机取向的无纺结构(聚氨酯 - 830 ± 145 nm,聚氨酯/氯化镁 - 508 ± 151 nm)。傅立叶红外光谱(FTIR)证实,氯化镁通过强氢键形成存在于聚氨酯基质中。使用凝血测定法(包括活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)和溶血测定法)进行的血液相容性研究表明,与原始聚氨酯(APTT - 152 ± 1.2s,PT - 73 ± 1.7s,溶血率 - 2.55%)相比,复合贴片的血液相容性更好(APTT - 174 ± 0.5s,PT - 91 ± 0.8s,溶血率 - 1.78%)。抗菌测试表明,与对照组相比,金黄色葡萄球菌抑制区(21.5 ± 0.5 mm)和大肠杆菌抑制区(27.5 ± 2.5 mm)有所扩大:研究得出结论:在聚氨酯中添加氯化镁能显著改善补片的机械、生物和生物相容性。这种复合贴片显示出未来伤口愈合应用的潜力,但还需要进一步的研究来验证其体内疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and Performance Evaluation of Magnesium Chloride-Enriched Polyurethane Nanofiber Patches for Wound Dressings.

Purpose: Wound patches are essential for wound healing, yet developing patches with enhanced mechanical and biological properties remains challenging. This study aimed to enhance the mechanical and biological properties of polyurethane (PU) by incorporating magnesium chloride (MgCl2) into the patch.

Methodology: The composite patch was fabricated using the electrospinning technique, producing nanofibers from a mixture of PU and MgCl2 solutions. The electrospun PU/MgCl2 was then evaluated for various physico-chemical characteristics and biological properties to determine its suitability for wound healing applications.

Results: Tensile strength testing showed that the mechanical properties of the composite patch (10.98 ± 0.18) were significantly improved compared to pristine PU (6.66 ± 0.44). Field scanning electron microscopy (FESEM) revealed that the electrospun nanofiber patch had a smooth, randomly oriented non-woven structure (PU - 830 ± 145 nm and PU/MgCl2 - 508 ± 151 nm). Fourier infrared spectroscopy (FTIR) confirmed magnesium chloride's presence in the polyurethane matrix via strong hydrogen bond formation. Blood compatibility studies using coagulation assays, including activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolysis assays, demonstrated improved blood compatibility of the composite patch (APTT - 174 ± 0.5 s, PT - 91 ± 0.8s, and Hemolytic percentage - 1.78%) compared to pristine PU (APTT - 152 ± 1.2s, PT - 73 ± 1.7s, and Hemolytic percentage - 2.55%). Antimicrobial testing showed an enhanced zone of inhibition (Staphylococcus aureus - 21.5 ± 0.5 mm and Escherichia coli - 27.5 ± 2.5 mm) compared to the control, while cell viability assays confirmed the non-cytotoxic nature of the developed patches on fibroblast cells.

Conclusion: The study concludes that adding MgCl2 to PU significantly improves the mechanical, biological, and biocompatibility properties of the patch. This composite patch shows potential for future wound healing applications, with further studies needed to validate its efficacy in-vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
期刊最新文献
Advancing Photodynamic Therapy with Nano-Conjugated Hypocrellin: Mechanisms and Clinical Applications. Breast Cancer Chemoprevention from Nano Zingiber officinale Roscoe. Characterization and Performance Evaluation of Magnesium Chloride-Enriched Polyurethane Nanofiber Patches for Wound Dressings. Enhanced Bacterial and Biofilm Adhesion Resistance of ALD Nano-TiO2 Coatings Compared to AO Coatings on Titanium Abutments. Iron-Based Nanoplatforms Achieve Hepatocellular Carcinoma Regression Through a Cascade of Effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1