用贝叶斯方法估算死亡截断的观察性研究中的不良反应。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-11-01 Epub Date: 2024-11-05 DOI:10.1177/09622802241283170
Anthony Sisti, Andrew Zullo, Roee Gutman
{"title":"用贝叶斯方法估算死亡截断的观察性研究中的不良反应。","authors":"Anthony Sisti, Andrew Zullo, Roee Gutman","doi":"10.1177/09622802241283170","DOIUrl":null,"url":null,"abstract":"<p><p>Death among subjects is common in observational studies evaluating the causal effects of interventions among geriatric or severely ill patients. High mortality rates complicate the comparison of the prevalence of adverse events between interventions. This problem is often referred to as outcome \"truncation\" by death. A possible solution is to estimate the survivor average causal effect, an estimand that evaluates the effects of interventions among those who would have survived under both treatment assignments. However, because the survivor average causal effect does not include subjects who would have died under one or both arms, it does not consider the relationship between adverse events and death. We propose a Bayesian method which imputes the unobserved mortality and adverse event outcomes for each participant under the intervention they did not receive. Using the imputed outcomes we define a composite ordinal outcome for each patient, combining the occurrence of death and the adverse event in an increasing scale of severity. This allows for the comparison of the effects of the interventions on death and the adverse event simultaneously among the entire sample. We implement the procedure to analyze the incidence of heart failure among geriatric patients being treated for Type II diabetes with sulfonylureas or dipeptidyl peptidase-4 inhibitors.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"2079-2097"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian method for adverse effects estimation in observational studies with truncation by death.\",\"authors\":\"Anthony Sisti, Andrew Zullo, Roee Gutman\",\"doi\":\"10.1177/09622802241283170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Death among subjects is common in observational studies evaluating the causal effects of interventions among geriatric or severely ill patients. High mortality rates complicate the comparison of the prevalence of adverse events between interventions. This problem is often referred to as outcome \\\"truncation\\\" by death. A possible solution is to estimate the survivor average causal effect, an estimand that evaluates the effects of interventions among those who would have survived under both treatment assignments. However, because the survivor average causal effect does not include subjects who would have died under one or both arms, it does not consider the relationship between adverse events and death. We propose a Bayesian method which imputes the unobserved mortality and adverse event outcomes for each participant under the intervention they did not receive. Using the imputed outcomes we define a composite ordinal outcome for each patient, combining the occurrence of death and the adverse event in an increasing scale of severity. This allows for the comparison of the effects of the interventions on death and the adverse event simultaneously among the entire sample. We implement the procedure to analyze the incidence of heart failure among geriatric patients being treated for Type II diabetes with sulfonylureas or dipeptidyl peptidase-4 inhibitors.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"2079-2097\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241283170\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241283170","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

在评估干预措施对老年病人或重病患者的因果影响的观察性研究中,受试者死亡的情况很常见。高死亡率使比较不同干预措施的不良事件发生率变得更加复杂。这个问题通常被称为死亡导致的结果 "截断"。一种可能的解决方案是估算幸存者平均因果效应,这种估算方法可以评估干预措施对两种治疗方案下存活者的影响。然而,由于幸存者平均因果效应不包括在一种或两种治疗方法下都会死亡的受试者,因此它没有考虑不良事件与死亡之间的关系。我们提出了一种贝叶斯方法,该方法可估算出每位受试者在未接受干预的情况下未观察到的死亡率和不良事件结果。利用估算的结果,我们为每位患者定义了一个综合的序数结果,将死亡和不良事件的发生按严重程度递增结合起来。这样就可以在整个样本中同时比较干预措施对死亡和不良事件的影响。我们采用该方法分析了接受磺脲类药物或二肽基肽酶-4 抑制剂治疗的 II 型糖尿病老年患者的心力衰竭发生率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian method for adverse effects estimation in observational studies with truncation by death.

Death among subjects is common in observational studies evaluating the causal effects of interventions among geriatric or severely ill patients. High mortality rates complicate the comparison of the prevalence of adverse events between interventions. This problem is often referred to as outcome "truncation" by death. A possible solution is to estimate the survivor average causal effect, an estimand that evaluates the effects of interventions among those who would have survived under both treatment assignments. However, because the survivor average causal effect does not include subjects who would have died under one or both arms, it does not consider the relationship between adverse events and death. We propose a Bayesian method which imputes the unobserved mortality and adverse event outcomes for each participant under the intervention they did not receive. Using the imputed outcomes we define a composite ordinal outcome for each patient, combining the occurrence of death and the adverse event in an increasing scale of severity. This allows for the comparison of the effects of the interventions on death and the adverse event simultaneously among the entire sample. We implement the procedure to analyze the incidence of heart failure among geriatric patients being treated for Type II diabetes with sulfonylureas or dipeptidyl peptidase-4 inhibitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses. Testing for a treatment effect in a selected subgroup. Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs. Analysis of recurrent event data with spatial random effects using a Bayesian approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1