Jules Antoine Pereira Macedo, Bruno Giraudeau, Escient Collaborators
{"title":"在分组随机试验中利用个体水平分析估算调整后的风险差异。","authors":"Jules Antoine Pereira Macedo, Bruno Giraudeau, Escient Collaborators","doi":"10.1177/09622802241293783","DOIUrl":null,"url":null,"abstract":"<p><p>In cluster randomized trials (CRTs) with a binary outcome, intervention effects are usually reported as odds ratios, but the CONSORT statement advocates reporting both a relative and an absolute intervention effect. With a simulation study, we assessed several methods to estimate a risk difference (RD) in the framework of a CRT with adjustment on both individual- and cluster-level covariates. We considered both a conditional approach (with the generalized linear mixed model [GLMM]) and a marginal approach (with the generalized estimating equation [GEE]). For both approaches, we considered the Gaussian, binomial, and Poisson distributions. When considering the binomial or Poisson distribution, we used the g-computation method to estimate the RD. Convergence problems were observed with the GEE approach, especially with low intra-cluster coefficient correlation values, small number of clusters, small mean cluster size, high number of covariates, and prevalences close to 0. All methods reported no bias. The Gaussian distribution with both approaches and binomial and Poisson distributions with the GEE approach had satisfactory results in estimating the standard error. Results for type I error and coverage rates were better with the GEE than GLMM approach. We recommend using the Gaussian distribution because of its ease of use (the RD is estimated in one step only). The GEE approach should be preferred and replaced with the GLMM approach in cases of convergence problems.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241293783"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.\",\"authors\":\"Jules Antoine Pereira Macedo, Bruno Giraudeau, Escient Collaborators\",\"doi\":\"10.1177/09622802241293783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cluster randomized trials (CRTs) with a binary outcome, intervention effects are usually reported as odds ratios, but the CONSORT statement advocates reporting both a relative and an absolute intervention effect. With a simulation study, we assessed several methods to estimate a risk difference (RD) in the framework of a CRT with adjustment on both individual- and cluster-level covariates. We considered both a conditional approach (with the generalized linear mixed model [GLMM]) and a marginal approach (with the generalized estimating equation [GEE]). For both approaches, we considered the Gaussian, binomial, and Poisson distributions. When considering the binomial or Poisson distribution, we used the g-computation method to estimate the RD. Convergence problems were observed with the GEE approach, especially with low intra-cluster coefficient correlation values, small number of clusters, small mean cluster size, high number of covariates, and prevalences close to 0. All methods reported no bias. The Gaussian distribution with both approaches and binomial and Poisson distributions with the GEE approach had satisfactory results in estimating the standard error. Results for type I error and coverage rates were better with the GEE than GLMM approach. We recommend using the Gaussian distribution because of its ease of use (the RD is estimated in one step only). The GEE approach should be preferred and replaced with the GLMM approach in cases of convergence problems.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802241293783\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241293783\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241293783","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.
In cluster randomized trials (CRTs) with a binary outcome, intervention effects are usually reported as odds ratios, but the CONSORT statement advocates reporting both a relative and an absolute intervention effect. With a simulation study, we assessed several methods to estimate a risk difference (RD) in the framework of a CRT with adjustment on both individual- and cluster-level covariates. We considered both a conditional approach (with the generalized linear mixed model [GLMM]) and a marginal approach (with the generalized estimating equation [GEE]). For both approaches, we considered the Gaussian, binomial, and Poisson distributions. When considering the binomial or Poisson distribution, we used the g-computation method to estimate the RD. Convergence problems were observed with the GEE approach, especially with low intra-cluster coefficient correlation values, small number of clusters, small mean cluster size, high number of covariates, and prevalences close to 0. All methods reported no bias. The Gaussian distribution with both approaches and binomial and Poisson distributions with the GEE approach had satisfactory results in estimating the standard error. Results for type I error and coverage rates were better with the GEE than GLMM approach. We recommend using the Gaussian distribution because of its ease of use (the RD is estimated in one step only). The GEE approach should be preferred and replaced with the GLMM approach in cases of convergence problems.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)