在分组随机试验中利用个体水平分析估算调整后的风险差异。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-11-05 DOI:10.1177/09622802241293783
Jules Antoine Pereira Macedo, Bruno Giraudeau, Escient Collaborators
{"title":"在分组随机试验中利用个体水平分析估算调整后的风险差异。","authors":"Jules Antoine Pereira Macedo, Bruno Giraudeau, Escient Collaborators","doi":"10.1177/09622802241293783","DOIUrl":null,"url":null,"abstract":"<p><p>In cluster randomized trials (CRTs) with a binary outcome, intervention effects are usually reported as odds ratios, but the CONSORT statement advocates reporting both a relative and an absolute intervention effect. With a simulation study, we assessed several methods to estimate a risk difference (RD) in the framework of a CRT with adjustment on both individual- and cluster-level covariates. We considered both a conditional approach (with the generalized linear mixed model [GLMM]) and a marginal approach (with the generalized estimating equation [GEE]). For both approaches, we considered the Gaussian, binomial, and Poisson distributions. When considering the binomial or Poisson distribution, we used the g-computation method to estimate the RD. Convergence problems were observed with the GEE approach, especially with low intra-cluster coefficient correlation values, small number of clusters, small mean cluster size, high number of covariates, and prevalences close to 0. All methods reported no bias. The Gaussian distribution with both approaches and binomial and Poisson distributions with the GEE approach had satisfactory results in estimating the standard error. Results for type I error and coverage rates were better with the GEE than GLMM approach. We recommend using the Gaussian distribution because of its ease of use (the RD is estimated in one step only). The GEE approach should be preferred and replaced with the GLMM approach in cases of convergence problems.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241293783"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.\",\"authors\":\"Jules Antoine Pereira Macedo, Bruno Giraudeau, Escient Collaborators\",\"doi\":\"10.1177/09622802241293783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cluster randomized trials (CRTs) with a binary outcome, intervention effects are usually reported as odds ratios, but the CONSORT statement advocates reporting both a relative and an absolute intervention effect. With a simulation study, we assessed several methods to estimate a risk difference (RD) in the framework of a CRT with adjustment on both individual- and cluster-level covariates. We considered both a conditional approach (with the generalized linear mixed model [GLMM]) and a marginal approach (with the generalized estimating equation [GEE]). For both approaches, we considered the Gaussian, binomial, and Poisson distributions. When considering the binomial or Poisson distribution, we used the g-computation method to estimate the RD. Convergence problems were observed with the GEE approach, especially with low intra-cluster coefficient correlation values, small number of clusters, small mean cluster size, high number of covariates, and prevalences close to 0. All methods reported no bias. The Gaussian distribution with both approaches and binomial and Poisson distributions with the GEE approach had satisfactory results in estimating the standard error. Results for type I error and coverage rates were better with the GEE than GLMM approach. We recommend using the Gaussian distribution because of its ease of use (the RD is estimated in one step only). The GEE approach should be preferred and replaced with the GLMM approach in cases of convergence problems.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802241293783\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241293783\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241293783","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

在具有二元结果的分组随机试验(CRT)中,干预效果通常以几率比来报告,但 CONSORT 声明主张同时报告相对和绝对干预效果。通过一项模拟研究,我们评估了在 CRT 框架下估算风险差异(RD)的几种方法,并对个体和群组水平的协变量进行了调整。我们考虑了条件法(使用广义线性混合模型 [GLMM])和边际法(使用广义估计方程 [GEE])。对于这两种方法,我们都考虑了高斯分布、二项分布和泊松分布。在考虑二项分布或泊松分布时,我们使用 g 计算法来估计 RD。GEE 方法存在收敛问题,尤其是在聚类内相关系数值低、聚类数量少、平均聚类规模小、协变量数量多、流行率接近 0 的情况下。两种方法中的高斯分布以及 GEE 方法中的二项分布和泊松分布在估计标准误差方面都取得了令人满意的结果。GEE 方法的 I 型误差和覆盖率结果优于 GLMM 方法。我们建议使用高斯分布,因为它易于使用(只需一步即可估计 RD)。如果出现收敛问题,应优先选择 GEE 方法,并用 GLMM 方法取而代之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.

In cluster randomized trials (CRTs) with a binary outcome, intervention effects are usually reported as odds ratios, but the CONSORT statement advocates reporting both a relative and an absolute intervention effect. With a simulation study, we assessed several methods to estimate a risk difference (RD) in the framework of a CRT with adjustment on both individual- and cluster-level covariates. We considered both a conditional approach (with the generalized linear mixed model [GLMM]) and a marginal approach (with the generalized estimating equation [GEE]). For both approaches, we considered the Gaussian, binomial, and Poisson distributions. When considering the binomial or Poisson distribution, we used the g-computation method to estimate the RD. Convergence problems were observed with the GEE approach, especially with low intra-cluster coefficient correlation values, small number of clusters, small mean cluster size, high number of covariates, and prevalences close to 0. All methods reported no bias. The Gaussian distribution with both approaches and binomial and Poisson distributions with the GEE approach had satisfactory results in estimating the standard error. Results for type I error and coverage rates were better with the GEE than GLMM approach. We recommend using the Gaussian distribution because of its ease of use (the RD is estimated in one step only). The GEE approach should be preferred and replaced with the GLMM approach in cases of convergence problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses. Testing for a treatment effect in a selected subgroup. Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs. Analysis of recurrent event data with spatial random effects using a Bayesian approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1