在肠屏障研究中应用外植体、隐窝和器官组织作为模型。

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Tissue Barriers Pub Date : 2024-11-05 DOI:10.1080/21688370.2024.2423137
Snezhanna Medvedeva, Kseniya Achasova, Lidiya Boldyreva, Anna Ogienko, Elena Kozhevnikova
{"title":"在肠屏障研究中应用外植体、隐窝和器官组织作为模型。","authors":"Snezhanna Medvedeva, Kseniya Achasova, Lidiya Boldyreva, Anna Ogienko, Elena Kozhevnikova","doi":"10.1080/21688370.2024.2423137","DOIUrl":null,"url":null,"abstract":"<p><p><i>In vitro</i> models are of great importance in advancing our understanding of human diseases, especially complex disorders with unknown etiologies like inflammatory bowel diseases (IBD). One of the key IBD features is the increased intestinal permeability. The disruption of the intestinal barrier can occur due to a destructive inflammatory response involving intestinal cell death. Alternatively, proteins that form tight junctions (TJ) fail to form function complexes and promote epithelial barrier disruption. The mechanisms behind this process are not fully understood. Thus, <i>in vitro</i> models that facilitate studying the intestinal barrier and its molecular components are of particular importance in the context of IBD. There are <i>in vitro</i> and <i>ex vivo</i> models that can be used to recapitulate some aspects of IBD. Among these are intestinal explants, crypts, and epithelial 3D-organoids. Here we describe some practical limitations of isolated crypts, gut tissue explants, and intestinal organoids as models in epithelial barrier biology, and TJ in particular. Our findings demonstrate that only 3D intestinal organoids formed from single cells are suitable to study barrier permeability <i>in vitro</i>, as primary crypt-derived organoids do not retain epithelial integrity due to cell death. Importantly, 3D organoids raised in culture conditions may fail to recapitulate inflammatory and barrier phenotypes of the source mouse model. To study the features of the inflamed epithelium, <i>ex vivo</i> intestinal explants and crypts were employed. We show here that isolated crypts do not preserve native TJ structure in a long-term experimental setting and tend to disintegrate in the unsupported culture environment. However, intestinal explants were stable in culture conditions for about 24 hours and demonstrated their applicability for short-term living tissue imaging and fluorescence recovery after photobleaching (FRAP). Thus, a combination of 3D organoids and intestinal explants provides a more accurate experimental platform to understand the intestinal epithelial barrier.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2423137"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of explants, crypts, and organoids as models in intestinal barrier research.\",\"authors\":\"Snezhanna Medvedeva, Kseniya Achasova, Lidiya Boldyreva, Anna Ogienko, Elena Kozhevnikova\",\"doi\":\"10.1080/21688370.2024.2423137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>In vitro</i> models are of great importance in advancing our understanding of human diseases, especially complex disorders with unknown etiologies like inflammatory bowel diseases (IBD). One of the key IBD features is the increased intestinal permeability. The disruption of the intestinal barrier can occur due to a destructive inflammatory response involving intestinal cell death. Alternatively, proteins that form tight junctions (TJ) fail to form function complexes and promote epithelial barrier disruption. The mechanisms behind this process are not fully understood. Thus, <i>in vitro</i> models that facilitate studying the intestinal barrier and its molecular components are of particular importance in the context of IBD. There are <i>in vitro</i> and <i>ex vivo</i> models that can be used to recapitulate some aspects of IBD. Among these are intestinal explants, crypts, and epithelial 3D-organoids. Here we describe some practical limitations of isolated crypts, gut tissue explants, and intestinal organoids as models in epithelial barrier biology, and TJ in particular. Our findings demonstrate that only 3D intestinal organoids formed from single cells are suitable to study barrier permeability <i>in vitro</i>, as primary crypt-derived organoids do not retain epithelial integrity due to cell death. Importantly, 3D organoids raised in culture conditions may fail to recapitulate inflammatory and barrier phenotypes of the source mouse model. To study the features of the inflamed epithelium, <i>ex vivo</i> intestinal explants and crypts were employed. We show here that isolated crypts do not preserve native TJ structure in a long-term experimental setting and tend to disintegrate in the unsupported culture environment. However, intestinal explants were stable in culture conditions for about 24 hours and demonstrated their applicability for short-term living tissue imaging and fluorescence recovery after photobleaching (FRAP). Thus, a combination of 3D organoids and intestinal explants provides a more accurate experimental platform to understand the intestinal epithelial barrier.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\" \",\"pages\":\"2423137\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2024.2423137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2423137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

体外模型对于增进我们对人类疾病的了解非常重要,尤其是像炎症性肠病(IBD)这样病因不明的复杂疾病。肠道渗透性增加是 IBD 的主要特征之一。肠道屏障的破坏可能是由于涉及肠细胞死亡的破坏性炎症反应造成的。另外,形成紧密连接(TJ)的蛋白质不能形成功能复合物,也会促进上皮屏障的破坏。这一过程背后的机制尚不完全清楚。因此,有助于研究肠屏障及其分子成分的体外模型对 IBD 尤为重要。有一些体外和体内模型可用来再现 IBD 的某些方面。其中包括肠道外植体、隐窝和上皮三维有机体。在这里,我们描述了离体隐窝、肠道组织外植体和肠道有机体作为上皮屏障生物学模型,特别是 TJ 模型的一些实际局限性。我们的研究结果表明,只有由单细胞形成的三维肠道器官组织才适合在体外研究屏障的通透性,因为原生隐窝衍生的器官组织由于细胞死亡而无法保持上皮的完整性。重要的是,在培养条件下培育的三维有机体可能无法再现源小鼠模型的炎症和屏障表型。为了研究炎症上皮的特征,我们采用了体外肠外植体和隐窝。我们在此表明,分离的隐窝在长期实验环境中无法保持原生的 TJ 结构,而且在无支撑的培养环境中容易解体。然而,肠道外植体在培养条件下可稳定存活约 24 小时,并证明其适用于短期活组织成像和光漂白后荧光恢复(FRAP)。因此,三维器官组织和肠外植体的结合为了解肠上皮屏障提供了一个更准确的实验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of explants, crypts, and organoids as models in intestinal barrier research.

In vitro models are of great importance in advancing our understanding of human diseases, especially complex disorders with unknown etiologies like inflammatory bowel diseases (IBD). One of the key IBD features is the increased intestinal permeability. The disruption of the intestinal barrier can occur due to a destructive inflammatory response involving intestinal cell death. Alternatively, proteins that form tight junctions (TJ) fail to form function complexes and promote epithelial barrier disruption. The mechanisms behind this process are not fully understood. Thus, in vitro models that facilitate studying the intestinal barrier and its molecular components are of particular importance in the context of IBD. There are in vitro and ex vivo models that can be used to recapitulate some aspects of IBD. Among these are intestinal explants, crypts, and epithelial 3D-organoids. Here we describe some practical limitations of isolated crypts, gut tissue explants, and intestinal organoids as models in epithelial barrier biology, and TJ in particular. Our findings demonstrate that only 3D intestinal organoids formed from single cells are suitable to study barrier permeability in vitro, as primary crypt-derived organoids do not retain epithelial integrity due to cell death. Importantly, 3D organoids raised in culture conditions may fail to recapitulate inflammatory and barrier phenotypes of the source mouse model. To study the features of the inflamed epithelium, ex vivo intestinal explants and crypts were employed. We show here that isolated crypts do not preserve native TJ structure in a long-term experimental setting and tend to disintegrate in the unsupported culture environment. However, intestinal explants were stable in culture conditions for about 24 hours and demonstrated their applicability for short-term living tissue imaging and fluorescence recovery after photobleaching (FRAP). Thus, a combination of 3D organoids and intestinal explants provides a more accurate experimental platform to understand the intestinal epithelial barrier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
期刊最新文献
Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. The application of explants, crypts, and organoids as models in intestinal barrier research. Decellularized small intestine scaffolds: a potential xenograft for restoration of intestinal perforation. The amazing axolotl: robust kidney regeneration following acute kidney injury. Surface layer proteins from Lactobacillus helveticus ATCC® 15009™ affect the gut barrier morphology and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1