{"title":"寄生类群是浮游纤毛虫从表层到深海水层垂直分层和群落变化的关键。","authors":"Yuanyuan Wan, Feng Zhao, Sabine Filker, Ariani Hatmanti, Rongjie Zhao, Kuidong Xu","doi":"10.1186/s40793-024-00630-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>An increase in upper-ocean thermal stratification is being observed worldwide due to global warming. However, how ocean stratification affects the vertical profile of plankton communities remains unclear. Understanding this is crucial for assessing the broader implications of ocean stratification. Pelagic ciliates cover multiple functional groups, and thus can serve as a model for studying the vertical distribution and functional strategies of plankton in stratified oceans. We hypothesize that pelagic ciliate communities exhibit vertical stratification caused by shifts in functional strategies, from free-living groups in the photic zone to parasitic groups in deeper waters.</p><p><strong>Results: </strong>306 samples from the surface to the abyssopelagic zone were collected from 31 stations in the western Pacific and analyzed with environmental DNA (the V4 region of 18 S rDNA) metabarcoding of pelagic ciliates. We found a distinct vertical stratification of the entire ciliate communities, with a boundary at a depth of 200 m. Significant distance-decay patterns were found in the photic layers of 5 m to the deep chlorophyll maximum and in the 2,000 m, 3000 m and bottom layers, while no significant pattern occurred in the mesopelagic layers of 200 m - 1,000 m. Below 200 m, parasitic Oligohymenophorea and Colpodea became more prevalent. A linear model showed that parasitic taxa were the main groups causing community variation along the water column. With increasing depth below 200 m, the ASV and sequence proportions of parasitic taxa increased. Statistical analyses indicated that water temperature shaped the photic communities, while parasitic taxa had a significant influence on the aphotic communities below 200 m.</p><p><strong>Conclusions: </strong>This study provides new insights into oceanic vertical distribution, connectivity and stratification from a biological perspective. The observed shift of functional strategies from free-living to parasitic groups at a 200 m transition layer improves our understanding of ocean ecosystems in the context of global warming.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"85"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539804/pdf/","citationCount":"0","resultStr":"{\"title\":\"Parasitic taxa are key to the vertical stratification and community variation of pelagic ciliates from the surface to the abyssopelagic zone.\",\"authors\":\"Yuanyuan Wan, Feng Zhao, Sabine Filker, Ariani Hatmanti, Rongjie Zhao, Kuidong Xu\",\"doi\":\"10.1186/s40793-024-00630-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>An increase in upper-ocean thermal stratification is being observed worldwide due to global warming. However, how ocean stratification affects the vertical profile of plankton communities remains unclear. Understanding this is crucial for assessing the broader implications of ocean stratification. Pelagic ciliates cover multiple functional groups, and thus can serve as a model for studying the vertical distribution and functional strategies of plankton in stratified oceans. We hypothesize that pelagic ciliate communities exhibit vertical stratification caused by shifts in functional strategies, from free-living groups in the photic zone to parasitic groups in deeper waters.</p><p><strong>Results: </strong>306 samples from the surface to the abyssopelagic zone were collected from 31 stations in the western Pacific and analyzed with environmental DNA (the V4 region of 18 S rDNA) metabarcoding of pelagic ciliates. We found a distinct vertical stratification of the entire ciliate communities, with a boundary at a depth of 200 m. Significant distance-decay patterns were found in the photic layers of 5 m to the deep chlorophyll maximum and in the 2,000 m, 3000 m and bottom layers, while no significant pattern occurred in the mesopelagic layers of 200 m - 1,000 m. Below 200 m, parasitic Oligohymenophorea and Colpodea became more prevalent. A linear model showed that parasitic taxa were the main groups causing community variation along the water column. With increasing depth below 200 m, the ASV and sequence proportions of parasitic taxa increased. Statistical analyses indicated that water temperature shaped the photic communities, while parasitic taxa had a significant influence on the aphotic communities below 200 m.</p><p><strong>Conclusions: </strong>This study provides new insights into oceanic vertical distribution, connectivity and stratification from a biological perspective. The observed shift of functional strategies from free-living to parasitic groups at a 200 m transition layer improves our understanding of ocean ecosystems in the context of global warming.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"19 1\",\"pages\":\"85\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-024-00630-0\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00630-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Parasitic taxa are key to the vertical stratification and community variation of pelagic ciliates from the surface to the abyssopelagic zone.
Background: An increase in upper-ocean thermal stratification is being observed worldwide due to global warming. However, how ocean stratification affects the vertical profile of plankton communities remains unclear. Understanding this is crucial for assessing the broader implications of ocean stratification. Pelagic ciliates cover multiple functional groups, and thus can serve as a model for studying the vertical distribution and functional strategies of plankton in stratified oceans. We hypothesize that pelagic ciliate communities exhibit vertical stratification caused by shifts in functional strategies, from free-living groups in the photic zone to parasitic groups in deeper waters.
Results: 306 samples from the surface to the abyssopelagic zone were collected from 31 stations in the western Pacific and analyzed with environmental DNA (the V4 region of 18 S rDNA) metabarcoding of pelagic ciliates. We found a distinct vertical stratification of the entire ciliate communities, with a boundary at a depth of 200 m. Significant distance-decay patterns were found in the photic layers of 5 m to the deep chlorophyll maximum and in the 2,000 m, 3000 m and bottom layers, while no significant pattern occurred in the mesopelagic layers of 200 m - 1,000 m. Below 200 m, parasitic Oligohymenophorea and Colpodea became more prevalent. A linear model showed that parasitic taxa were the main groups causing community variation along the water column. With increasing depth below 200 m, the ASV and sequence proportions of parasitic taxa increased. Statistical analyses indicated that water temperature shaped the photic communities, while parasitic taxa had a significant influence on the aphotic communities below 200 m.
Conclusions: This study provides new insights into oceanic vertical distribution, connectivity and stratification from a biological perspective. The observed shift of functional strategies from free-living to parasitic groups at a 200 m transition layer improves our understanding of ocean ecosystems in the context of global warming.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.