抑制中性粒细胞产生伊它康酸可减轻肺炎支原体肺炎。

IF 5.5 1区 医学 Q1 MICROBIOLOGY PLoS Pathogens Pub Date : 2024-11-05 eCollection Date: 2024-11-01 DOI:10.1371/journal.ppat.1012614
Cui Wang, Jun Wen, Zijun Yan, Yujun Zhou, Zhande Gong, Ying Luo, Zhenkui Li, Kang Zheng, Haijun Zhang, Nan Ding, Chuan Wang, Cuiming Zhu, Yimou Wu, Aihua Lei
{"title":"抑制中性粒细胞产生伊它康酸可减轻肺炎支原体肺炎。","authors":"Cui Wang, Jun Wen, Zijun Yan, Yujun Zhou, Zhande Gong, Ying Luo, Zhenkui Li, Kang Zheng, Haijun Zhang, Nan Ding, Chuan Wang, Cuiming Zhu, Yimou Wu, Aihua Lei","doi":"10.1371/journal.ppat.1012614","DOIUrl":null,"url":null,"abstract":"<p><p>Mycoplasma pneumoniae is a common cause of community-acquired pneumonia in which neutrophils play a critical role. Immune-responsive gene 1 (IRG1), responsible for itaconate production, has emerged as an important regulator of inflammation and infection, but its role during M. pneumoniae infection remains unknown. Here, we reveal that itaconate is an endogenous pro-inflammatory metabolite during M. pneumoniae infection. Irg1 knockout (KO) mice had lower levels of bacterial burden, lactate dehydrogenase (LDH), and pro-inflammatory cytokines compared with wild-type (WT) controls after M. pneumoniae infection. Neutrophils were the major cells producing itaconate during M. pneumoniae infection in mice. Neutrophil counts were positively correlated with itaconate concentrations in bronchoalveolar lavage fluid (BALF) of patients with severe M. pneumoniae pneumonia. Adoptive transfer of Irg1 KO neutrophils, or administration of β-glucan (an inhibitor of Irg1 expression), significantly attenuated M. pneumoniae pneumonia in mice. Mechanistically, itaconate impaired neutrophil bacterial killing and suppressed neutrophil apoptosis via inhibiting mitochondrial ROS. Moreover, M. pneumoniae induced Irg1 expression by activating NF-κB and STAT1 pathways involving TLR2. Our data thus identify Irg1/itaconate pathway as a potential therapeutic target for the treatment of M. pneumoniae pneumonia.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 11","pages":"e1012614"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppressing neutrophil itaconate production attenuates Mycoplasma pneumoniae pneumonia.\",\"authors\":\"Cui Wang, Jun Wen, Zijun Yan, Yujun Zhou, Zhande Gong, Ying Luo, Zhenkui Li, Kang Zheng, Haijun Zhang, Nan Ding, Chuan Wang, Cuiming Zhu, Yimou Wu, Aihua Lei\",\"doi\":\"10.1371/journal.ppat.1012614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mycoplasma pneumoniae is a common cause of community-acquired pneumonia in which neutrophils play a critical role. Immune-responsive gene 1 (IRG1), responsible for itaconate production, has emerged as an important regulator of inflammation and infection, but its role during M. pneumoniae infection remains unknown. Here, we reveal that itaconate is an endogenous pro-inflammatory metabolite during M. pneumoniae infection. Irg1 knockout (KO) mice had lower levels of bacterial burden, lactate dehydrogenase (LDH), and pro-inflammatory cytokines compared with wild-type (WT) controls after M. pneumoniae infection. Neutrophils were the major cells producing itaconate during M. pneumoniae infection in mice. Neutrophil counts were positively correlated with itaconate concentrations in bronchoalveolar lavage fluid (BALF) of patients with severe M. pneumoniae pneumonia. Adoptive transfer of Irg1 KO neutrophils, or administration of β-glucan (an inhibitor of Irg1 expression), significantly attenuated M. pneumoniae pneumonia in mice. Mechanistically, itaconate impaired neutrophil bacterial killing and suppressed neutrophil apoptosis via inhibiting mitochondrial ROS. Moreover, M. pneumoniae induced Irg1 expression by activating NF-κB and STAT1 pathways involving TLR2. Our data thus identify Irg1/itaconate pathway as a potential therapeutic target for the treatment of M. pneumoniae pneumonia.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"20 11\",\"pages\":\"e1012614\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012614\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012614","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肺炎支原体是社区获得性肺炎的常见病因,中性粒细胞在其中发挥着关键作用。负责产生伊塔康酸的免疫反应基因 1(IRG1)已成为炎症和感染的重要调节因子,但它在肺炎支原体感染过程中的作用仍不清楚。在这里,我们揭示了它康酸是肺炎霉菌感染过程中的一种内源性促炎症代谢产物。与野生型(WT)对照组相比,Irg1基因敲除(KO)小鼠感染肺炎霉菌后的细菌负荷、乳酸脱氢酶(LDH)和促炎细胞因子水平较低。中性粒细胞是小鼠感染肺炎霉菌后产生伊他康酸的主要细胞。中性粒细胞数量与重症肺炎双球菌肺炎患者支气管肺泡灌洗液(BALF)中伊他康酸浓度呈正相关。采用Irg1 KO中性粒细胞转移或服用β-葡聚糖(Irg1表达抑制剂)可显著减轻小鼠的肺炎霉菌肺炎。从机理上讲,伊塔康酸可通过抑制线粒体 ROS 来削弱中性粒细胞对细菌的杀伤力并抑制中性粒细胞的凋亡。此外,肺炎霉菌通过激活涉及 TLR2 的 NF-κB 和 STAT1 通路诱导 Irg1 的表达。因此,我们的数据确定了 Irg1/itaconate 通路是治疗 M. pneumoniae 肺炎的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suppressing neutrophil itaconate production attenuates Mycoplasma pneumoniae pneumonia.

Mycoplasma pneumoniae is a common cause of community-acquired pneumonia in which neutrophils play a critical role. Immune-responsive gene 1 (IRG1), responsible for itaconate production, has emerged as an important regulator of inflammation and infection, but its role during M. pneumoniae infection remains unknown. Here, we reveal that itaconate is an endogenous pro-inflammatory metabolite during M. pneumoniae infection. Irg1 knockout (KO) mice had lower levels of bacterial burden, lactate dehydrogenase (LDH), and pro-inflammatory cytokines compared with wild-type (WT) controls after M. pneumoniae infection. Neutrophils were the major cells producing itaconate during M. pneumoniae infection in mice. Neutrophil counts were positively correlated with itaconate concentrations in bronchoalveolar lavage fluid (BALF) of patients with severe M. pneumoniae pneumonia. Adoptive transfer of Irg1 KO neutrophils, or administration of β-glucan (an inhibitor of Irg1 expression), significantly attenuated M. pneumoniae pneumonia in mice. Mechanistically, itaconate impaired neutrophil bacterial killing and suppressed neutrophil apoptosis via inhibiting mitochondrial ROS. Moreover, M. pneumoniae induced Irg1 expression by activating NF-κB and STAT1 pathways involving TLR2. Our data thus identify Irg1/itaconate pathway as a potential therapeutic target for the treatment of M. pneumoniae pneumonia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
Coronavirus nucleocapsid protein enhances the binding of p-PKCα to RACK1: Implications for inhibition of nucleocytoplasmic trafficking and suppression of the innate immune response. Human norovirus disturbs intestinal motility and transit time through its capsid proteins. Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate. Examining the molecular clock hypothesis for the contemporary evolution of the rabies virus. Membrane fluidity control by the Magnaporthe oryzae acyl-CoA binding protein sets the thermal range for host rice cell colonization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1