Sha Tan, Oleg Borodin, Nan Wang, Dean Yen, Conan Weiland and Enyuan Hu*,
{"title":"阴离子与溶剂生成的互相协同作用使锂离子电池能在极端条件下工作","authors":"Sha Tan, Oleg Borodin, Nan Wang, Dean Yen, Conan Weiland and Enyuan Hu*, ","doi":"10.1021/jacs.4c0780610.1021/jacs.4c07806","DOIUrl":null,"url":null,"abstract":"<p >Lithium-ion batteries (LIBs) face increasingly stringent demands as their application expands into new areas, including extreme temperatures and fast charging. To meet these demands, the electrolyte should enable fast lithium-ion transport and form stable interphases on electrodes simultaneously. In practice, however, improving one aspect often compromises another. For instance, the trend toward electrolytes forming anion-derived interphases typically reduces transport efficiency due to weak-solvating solvents. We propose that instead of relying on anions to form the interphase, leveraging both solvents and anions to form interphases can potentially lead to a balancing point between robust interphase formation and effective ion transport. Guided by this design principle, 2,2-difluoroethyl ethyl carbonate (DFDEC) was identified as the promising solvent. With the new electrolyte using DFDEC as the major solvent and lithium bis(fluorosulfonyl) imide (LiFSI) as the salt, graphite||LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) full cells are capable of fast charging and demonstrate long-term cycling stability with a cutoff voltage of 4.5 V. Notably, the battery shows a capacity retention of 84.3% after 500 cycles with an average Coulombic efficiency (CE) as high as 99.93%. This new electrolyte also enables stable battery cycling across a wide temperature range (−20 to 60 °C), with excellent capacity retention.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30104–30116 30104–30116"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Anion and Solvent-Derived Interphases Enable Lithium-Ion Batteries under Extreme Conditions\",\"authors\":\"Sha Tan, Oleg Borodin, Nan Wang, Dean Yen, Conan Weiland and Enyuan Hu*, \",\"doi\":\"10.1021/jacs.4c0780610.1021/jacs.4c07806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium-ion batteries (LIBs) face increasingly stringent demands as their application expands into new areas, including extreme temperatures and fast charging. To meet these demands, the electrolyte should enable fast lithium-ion transport and form stable interphases on electrodes simultaneously. In practice, however, improving one aspect often compromises another. For instance, the trend toward electrolytes forming anion-derived interphases typically reduces transport efficiency due to weak-solvating solvents. We propose that instead of relying on anions to form the interphase, leveraging both solvents and anions to form interphases can potentially lead to a balancing point between robust interphase formation and effective ion transport. Guided by this design principle, 2,2-difluoroethyl ethyl carbonate (DFDEC) was identified as the promising solvent. With the new electrolyte using DFDEC as the major solvent and lithium bis(fluorosulfonyl) imide (LiFSI) as the salt, graphite||LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) full cells are capable of fast charging and demonstrate long-term cycling stability with a cutoff voltage of 4.5 V. Notably, the battery shows a capacity retention of 84.3% after 500 cycles with an average Coulombic efficiency (CE) as high as 99.93%. This new electrolyte also enables stable battery cycling across a wide temperature range (−20 to 60 °C), with excellent capacity retention.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30104–30116 30104–30116\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c07806\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c07806","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic Anion and Solvent-Derived Interphases Enable Lithium-Ion Batteries under Extreme Conditions
Lithium-ion batteries (LIBs) face increasingly stringent demands as their application expands into new areas, including extreme temperatures and fast charging. To meet these demands, the electrolyte should enable fast lithium-ion transport and form stable interphases on electrodes simultaneously. In practice, however, improving one aspect often compromises another. For instance, the trend toward electrolytes forming anion-derived interphases typically reduces transport efficiency due to weak-solvating solvents. We propose that instead of relying on anions to form the interphase, leveraging both solvents and anions to form interphases can potentially lead to a balancing point between robust interphase formation and effective ion transport. Guided by this design principle, 2,2-difluoroethyl ethyl carbonate (DFDEC) was identified as the promising solvent. With the new electrolyte using DFDEC as the major solvent and lithium bis(fluorosulfonyl) imide (LiFSI) as the salt, graphite||LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells are capable of fast charging and demonstrate long-term cycling stability with a cutoff voltage of 4.5 V. Notably, the battery shows a capacity retention of 84.3% after 500 cycles with an average Coulombic efficiency (CE) as high as 99.93%. This new electrolyte also enables stable battery cycling across a wide temperature range (−20 to 60 °C), with excellent capacity retention.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.