暴露于伽马辐射的对称和不对称反式双吡啶乙烯粉末的结构积分:电子衍射辅助下的堆积和电子学考虑因素

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-16 DOI:10.1021/acs.cgd.4c0089510.1021/acs.cgd.4c00895
Samantha J. Kruse, Pierre Le Magueres, Eric W. Reinheimer, Tori Z. Forbes and Leonard R. MacGillivray*, 
{"title":"暴露于伽马辐射的对称和不对称反式双吡啶乙烯粉末的结构积分:电子衍射辅助下的堆积和电子学考虑因素","authors":"Samantha J. Kruse,&nbsp;Pierre Le Magueres,&nbsp;Eric W. Reinheimer,&nbsp;Tori Z. Forbes and Leonard R. MacGillivray*,&nbsp;","doi":"10.1021/acs.cgd.4c0089510.1021/acs.cgd.4c00895","DOIUrl":null,"url":null,"abstract":"<p >Radiation detection (dosimetry) most commonly uses scintillating materials in a wide array of fields, ranging from energy to medicine. Scintillators must be able to not only fluoresce owing to the presence of a suitable chromophore but also withstand damage from radiation over prolonged periods of time. While it is inevitable that radiation will cause damage to the physical and chemical properties of materials, there is limited understanding of features within solid-state scintillators that afford increased structural integrity upon exposure to gamma (γ) radiation. Even fewer studies have evaluated both physical- and atomistic-level properties of organic solid-state materials. Previous work demonstrated cocrystalline materials afford radiation resistance in comparison to the single component counterparts, as realized by <i>trans</i>-1,2-bis(4-pyridyl)ethylene (<b>4,4′-bpe</b>). To support the rational design of radiation-resistant scintillators, we have examined all symmetric and unsymmetric isomers of <i>trans</i>-1-(<i>n</i>-pyridyl)2-(<i>m</i>-pyridyl)ethylene (<i>n,m</i>′<i>-</i>bpe, where <i>n</i> and/or <i>m</i> = 2, 3, or 4) solid-state crystalline materials. Experimental methods employed include single-crystal, powder, and electron diffraction as well as solid-state fluorimetry. Periodic density functional theory (DFT) calculations were used to understand the atomistic-level differences in bond lengths, bond orders, and packing. Electron diffraction was also utilized to determine the structure of a nanocrystalline sample. The results provide insights into possible trends involving factors such as molecular symmetry which provides radiation resistance as well as information for rationally designing single and multicomponent scintillators with the intent of minimizing changes upon γ-radiation exposure.</p><p >The introduction of ionizing radiation to the complete series <i>trans</i>-1-(<i>n</i>-pyridyl)2-(<i>m</i>-pyridyl)ethylenes (where <i>n</i> and/or <i>m</i> = 2, 3, 4) is used to assess structural stability and is determined to enhance fluorescence.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.4c00895","citationCount":"0","resultStr":"{\"title\":\"Structural Integrities of Symmetric and Unsymmetric trans-Bis-pyridyl Ethylene Powders Exposed to Gamma Radiation: Packing and Electronic Considerations Assisted by Electron Diffraction\",\"authors\":\"Samantha J. Kruse,&nbsp;Pierre Le Magueres,&nbsp;Eric W. Reinheimer,&nbsp;Tori Z. Forbes and Leonard R. MacGillivray*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.4c0089510.1021/acs.cgd.4c00895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Radiation detection (dosimetry) most commonly uses scintillating materials in a wide array of fields, ranging from energy to medicine. Scintillators must be able to not only fluoresce owing to the presence of a suitable chromophore but also withstand damage from radiation over prolonged periods of time. While it is inevitable that radiation will cause damage to the physical and chemical properties of materials, there is limited understanding of features within solid-state scintillators that afford increased structural integrity upon exposure to gamma (γ) radiation. Even fewer studies have evaluated both physical- and atomistic-level properties of organic solid-state materials. Previous work demonstrated cocrystalline materials afford radiation resistance in comparison to the single component counterparts, as realized by <i>trans</i>-1,2-bis(4-pyridyl)ethylene (<b>4,4′-bpe</b>). To support the rational design of radiation-resistant scintillators, we have examined all symmetric and unsymmetric isomers of <i>trans</i>-1-(<i>n</i>-pyridyl)2-(<i>m</i>-pyridyl)ethylene (<i>n,m</i>′<i>-</i>bpe, where <i>n</i> and/or <i>m</i> = 2, 3, or 4) solid-state crystalline materials. Experimental methods employed include single-crystal, powder, and electron diffraction as well as solid-state fluorimetry. Periodic density functional theory (DFT) calculations were used to understand the atomistic-level differences in bond lengths, bond orders, and packing. Electron diffraction was also utilized to determine the structure of a nanocrystalline sample. The results provide insights into possible trends involving factors such as molecular symmetry which provides radiation resistance as well as information for rationally designing single and multicomponent scintillators with the intent of minimizing changes upon γ-radiation exposure.</p><p >The introduction of ionizing radiation to the complete series <i>trans</i>-1-(<i>n</i>-pyridyl)2-(<i>m</i>-pyridyl)ethylenes (where <i>n</i> and/or <i>m</i> = 2, 3, 4) is used to assess structural stability and is determined to enhance fluorescence.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.4c00895\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00895\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00895","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

辐射探测(剂量测定)最常用的闪烁材料广泛应用于从能源到医药等各个领域。闪烁体不仅要能因存在合适的发色团而发出荧光,还要能承受长时间辐射的损害。虽然辐射不可避免地会对材料的物理和化学性质造成破坏,但人们对固态闪烁体在暴露于伽马(γ)辐射时可提高结构完整性的特性了解有限。对有机固态材料的物理和原子层面特性进行评估的研究更是少之又少。以前的研究表明,与单组分材料相比,共晶材料具有抗辐射能力,反式-1,2-双(4-吡啶基)乙烯(4,4′-bpe)就是这样实现的。为了支持抗辐射闪烁体的合理设计,我们研究了反式-1-(正吡啶基)2-(间吡啶基)乙烯(n,m′-bpe,其中 n 和/或 m = 2、3 或 4)固态晶体材料的所有对称和非对称异构体。采用的实验方法包括单晶、粉末和电子衍射以及固态荧光测定法。利用周期密度泛函理论(DFT)计算来了解键长、键阶和堆积的原子级差异。电子衍射也被用来确定纳米晶体样品的结构。研究结果深入揭示了涉及分子对称性等因素的可能趋势,而分子对称性提供了抗辐射能力,同时还提供了合理设计单组分和多组分闪烁体的信息,目的是最大限度地减少γ 辐射照射时的变化。将电离辐射引入反式-1-(n-吡啶基)2-(m-吡啶基)乙烯全系列(其中 n 和/或 m = 2、3、4),用于评估结构稳定性,并确定会增强荧光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural Integrities of Symmetric and Unsymmetric trans-Bis-pyridyl Ethylene Powders Exposed to Gamma Radiation: Packing and Electronic Considerations Assisted by Electron Diffraction

Radiation detection (dosimetry) most commonly uses scintillating materials in a wide array of fields, ranging from energy to medicine. Scintillators must be able to not only fluoresce owing to the presence of a suitable chromophore but also withstand damage from radiation over prolonged periods of time. While it is inevitable that radiation will cause damage to the physical and chemical properties of materials, there is limited understanding of features within solid-state scintillators that afford increased structural integrity upon exposure to gamma (γ) radiation. Even fewer studies have evaluated both physical- and atomistic-level properties of organic solid-state materials. Previous work demonstrated cocrystalline materials afford radiation resistance in comparison to the single component counterparts, as realized by trans-1,2-bis(4-pyridyl)ethylene (4,4′-bpe). To support the rational design of radiation-resistant scintillators, we have examined all symmetric and unsymmetric isomers of trans-1-(n-pyridyl)2-(m-pyridyl)ethylene (n,m-bpe, where n and/or m = 2, 3, or 4) solid-state crystalline materials. Experimental methods employed include single-crystal, powder, and electron diffraction as well as solid-state fluorimetry. Periodic density functional theory (DFT) calculations were used to understand the atomistic-level differences in bond lengths, bond orders, and packing. Electron diffraction was also utilized to determine the structure of a nanocrystalline sample. The results provide insights into possible trends involving factors such as molecular symmetry which provides radiation resistance as well as information for rationally designing single and multicomponent scintillators with the intent of minimizing changes upon γ-radiation exposure.

The introduction of ionizing radiation to the complete series trans-1-(n-pyridyl)2-(m-pyridyl)ethylenes (where n and/or m = 2, 3, 4) is used to assess structural stability and is determined to enhance fluorescence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1