Huadong Lin , Xiaohan Yu , Pengcheng Zhang , Xiao Bai , Jin Zheng
{"title":"针对弱监督人员搜索的一致原型对比学习","authors":"Huadong Lin , Xiaohan Yu , Pengcheng Zhang , Xiao Bai , Jin Zheng","doi":"10.1016/j.jvcir.2024.104321","DOIUrl":null,"url":null,"abstract":"<div><div>Weakly supervised person search simultaneously addresses detection and re-identification tasks without relying on person identity labels. Prototype-based contrastive learning is commonly used to address unsupervised person re-identification. We argue that prototypes suffer from spatial, temporal, and label inconsistencies, which result in their inaccurate representation. In this paper, we propose a novel Consistent Prototype Contrastive Learning (CPCL) framework to address prototype inconsistency. For spatial inconsistency, a greedy update strategy is developed to introduce ground truth proposals in the training process and update the memory bank only with the ground truth features. To improve temporal consistency, CPCL employs a local window strategy to calculate the prototype within a specific temporal domain window. To tackle label inconsistency, CPCL adopts a prototype nearest neighbor consistency method that leverages the intrinsic information of the prototypes to rectify the pseudo-labels. Experimentally, the proposed method exhibits remarkable performance improvements on both the CUHK-SYSU and PRW datasets, achieving an mAP of 90.2% and 29.3% respectively. Moreover, it achieves state-of-the-art performance on the CUHK-SYSU dataset. The code will be available on the project website: <span><span>https://github.com/JackFlying/cpcl</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"105 ","pages":"Article 104321"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistent prototype contrastive learning for weakly supervised person search\",\"authors\":\"Huadong Lin , Xiaohan Yu , Pengcheng Zhang , Xiao Bai , Jin Zheng\",\"doi\":\"10.1016/j.jvcir.2024.104321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Weakly supervised person search simultaneously addresses detection and re-identification tasks without relying on person identity labels. Prototype-based contrastive learning is commonly used to address unsupervised person re-identification. We argue that prototypes suffer from spatial, temporal, and label inconsistencies, which result in their inaccurate representation. In this paper, we propose a novel Consistent Prototype Contrastive Learning (CPCL) framework to address prototype inconsistency. For spatial inconsistency, a greedy update strategy is developed to introduce ground truth proposals in the training process and update the memory bank only with the ground truth features. To improve temporal consistency, CPCL employs a local window strategy to calculate the prototype within a specific temporal domain window. To tackle label inconsistency, CPCL adopts a prototype nearest neighbor consistency method that leverages the intrinsic information of the prototypes to rectify the pseudo-labels. Experimentally, the proposed method exhibits remarkable performance improvements on both the CUHK-SYSU and PRW datasets, achieving an mAP of 90.2% and 29.3% respectively. Moreover, it achieves state-of-the-art performance on the CUHK-SYSU dataset. The code will be available on the project website: <span><span>https://github.com/JackFlying/cpcl</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"105 \",\"pages\":\"Article 104321\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002773\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002773","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Consistent prototype contrastive learning for weakly supervised person search
Weakly supervised person search simultaneously addresses detection and re-identification tasks without relying on person identity labels. Prototype-based contrastive learning is commonly used to address unsupervised person re-identification. We argue that prototypes suffer from spatial, temporal, and label inconsistencies, which result in their inaccurate representation. In this paper, we propose a novel Consistent Prototype Contrastive Learning (CPCL) framework to address prototype inconsistency. For spatial inconsistency, a greedy update strategy is developed to introduce ground truth proposals in the training process and update the memory bank only with the ground truth features. To improve temporal consistency, CPCL employs a local window strategy to calculate the prototype within a specific temporal domain window. To tackle label inconsistency, CPCL adopts a prototype nearest neighbor consistency method that leverages the intrinsic information of the prototypes to rectify the pseudo-labels. Experimentally, the proposed method exhibits remarkable performance improvements on both the CUHK-SYSU and PRW datasets, achieving an mAP of 90.2% and 29.3% respectively. Moreover, it achieves state-of-the-art performance on the CUHK-SYSU dataset. The code will be available on the project website: https://github.com/JackFlying/cpcl.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.