{"title":"利用渗流理论实现无人机群在攻击下的复原力","authors":"Tianzhen Hu , Yan Zong , Ningyun Lu , Bin Jiang","doi":"10.1016/j.ress.2024.110608","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial swarms have been widely applied across various domains. The security of swarms against attacks has been of significance. However, there still exists a lack of quantitatively assessing the unmanned swarm resilience against attacks. Thus, this work adopts the percolation theory to mathematically analyse the resilience of the unmanned aerial swarms after random attacks. In addition to the typically used popularity in the preferential attachment, distance of neighbours is taken into account for modelling unmanned swarms, which is missing in the literature. This improved preferential attachment-based swarm model offers a more precise and realistic description of swarm behaviours. In addition, an attack model is proposed, which can be a description of dynamic attacks. Moreover, this study also utilizes the percolation theory to assess the resilience of swarms after the random attacks. Finally, the simulation results show that the resilience derived using percolation theory aligns with the improved swarm model. The proposed swarm model maintains <span><math><mrow><mn>79</mn><mtext>%</mtext></mrow></math></span> resilience when <span><math><mrow><mn>20</mn><mtext>%</mtext></mrow></math></span> of the UAVs are attacked under random attacks, and even <span><math><mrow><mn>69</mn><mo>.</mo><mn>4</mn><mtext>%</mtext></mrow></math></span> resilience when <span><math><mrow><mn>20</mn><mtext>%</mtext></mrow></math></span> of the UAVs are attacked under initial betweenness-based attacks.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110608"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward the resilience of UAV swarms with percolation theory under attacks\",\"authors\":\"Tianzhen Hu , Yan Zong , Ningyun Lu , Bin Jiang\",\"doi\":\"10.1016/j.ress.2024.110608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial swarms have been widely applied across various domains. The security of swarms against attacks has been of significance. However, there still exists a lack of quantitatively assessing the unmanned swarm resilience against attacks. Thus, this work adopts the percolation theory to mathematically analyse the resilience of the unmanned aerial swarms after random attacks. In addition to the typically used popularity in the preferential attachment, distance of neighbours is taken into account for modelling unmanned swarms, which is missing in the literature. This improved preferential attachment-based swarm model offers a more precise and realistic description of swarm behaviours. In addition, an attack model is proposed, which can be a description of dynamic attacks. Moreover, this study also utilizes the percolation theory to assess the resilience of swarms after the random attacks. Finally, the simulation results show that the resilience derived using percolation theory aligns with the improved swarm model. The proposed swarm model maintains <span><math><mrow><mn>79</mn><mtext>%</mtext></mrow></math></span> resilience when <span><math><mrow><mn>20</mn><mtext>%</mtext></mrow></math></span> of the UAVs are attacked under random attacks, and even <span><math><mrow><mn>69</mn><mo>.</mo><mn>4</mn><mtext>%</mtext></mrow></math></span> resilience when <span><math><mrow><mn>20</mn><mtext>%</mtext></mrow></math></span> of the UAVs are attacked under initial betweenness-based attacks.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"254 \",\"pages\":\"Article 110608\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006793\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006793","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Toward the resilience of UAV swarms with percolation theory under attacks
Unmanned aerial swarms have been widely applied across various domains. The security of swarms against attacks has been of significance. However, there still exists a lack of quantitatively assessing the unmanned swarm resilience against attacks. Thus, this work adopts the percolation theory to mathematically analyse the resilience of the unmanned aerial swarms after random attacks. In addition to the typically used popularity in the preferential attachment, distance of neighbours is taken into account for modelling unmanned swarms, which is missing in the literature. This improved preferential attachment-based swarm model offers a more precise and realistic description of swarm behaviours. In addition, an attack model is proposed, which can be a description of dynamic attacks. Moreover, this study also utilizes the percolation theory to assess the resilience of swarms after the random attacks. Finally, the simulation results show that the resilience derived using percolation theory aligns with the improved swarm model. The proposed swarm model maintains resilience when of the UAVs are attacked under random attacks, and even resilience when of the UAVs are attacked under initial betweenness-based attacks.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.