Xianhe Cheng , Qigang Han , Yuzhang Huang , Mingdi Shi , Hexuan Shi , Mengxue Ji , Chuncai Yang
{"title":"生物启发超精细混合纳米涂层用于提高柔性制造中复合材料风扇叶片的强度和耐损伤性","authors":"Xianhe Cheng , Qigang Han , Yuzhang Huang , Mingdi Shi , Hexuan Shi , Mengxue Ji , Chuncai Yang","doi":"10.1016/j.compscitech.2024.110956","DOIUrl":null,"url":null,"abstract":"<div><div>The ultrafine mineral bridges/bio-polymer hybrid structure inspired by nacreous is applied to the interface structure design of composite, aiming to address the high brittleness and low damage tolerance problems of carbon fiber composite fan blades (CFCFB). Herein, we present a simple and efficient approach, called the \"cationic copolymer-mono micelle-mediated\" method, to translate the nacre-inspired structure for developing micelles/ZnO hybrid nanocoating. The hybrid nanocoating was demonstrated to have remarkable characteristics such as ultrafine ZnO sizes, monodispersity, uniformity, and core-shell structure (diameters: ≈45 nm). Additionally, the coating process is simple, solvent-free, and seamlessly integrates with scalable carbon fiber manufacturing. Based on the nacre-inspired interface structure, the CFCFB exhibits high interlaminar strength (99.3 MPa), high stiffness (79 GPa), and high toughness (41.2 MPa m<sup>1/2</sup>). This study provides a blueprint for bioinspired ultrafine nanostructure design in composites and inspires advanced manufacturing strategies for other promising engineering materials.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired ultra-fine hybrid nanocoating for improving strength and damage tolerance of composite fan blades in flexible manufacturing\",\"authors\":\"Xianhe Cheng , Qigang Han , Yuzhang Huang , Mingdi Shi , Hexuan Shi , Mengxue Ji , Chuncai Yang\",\"doi\":\"10.1016/j.compscitech.2024.110956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ultrafine mineral bridges/bio-polymer hybrid structure inspired by nacreous is applied to the interface structure design of composite, aiming to address the high brittleness and low damage tolerance problems of carbon fiber composite fan blades (CFCFB). Herein, we present a simple and efficient approach, called the \\\"cationic copolymer-mono micelle-mediated\\\" method, to translate the nacre-inspired structure for developing micelles/ZnO hybrid nanocoating. The hybrid nanocoating was demonstrated to have remarkable characteristics such as ultrafine ZnO sizes, monodispersity, uniformity, and core-shell structure (diameters: ≈45 nm). Additionally, the coating process is simple, solvent-free, and seamlessly integrates with scalable carbon fiber manufacturing. Based on the nacre-inspired interface structure, the CFCFB exhibits high interlaminar strength (99.3 MPa), high stiffness (79 GPa), and high toughness (41.2 MPa m<sup>1/2</sup>). This study provides a blueprint for bioinspired ultrafine nanostructure design in composites and inspires advanced manufacturing strategies for other promising engineering materials.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005268\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005268","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Bioinspired ultra-fine hybrid nanocoating for improving strength and damage tolerance of composite fan blades in flexible manufacturing
The ultrafine mineral bridges/bio-polymer hybrid structure inspired by nacreous is applied to the interface structure design of composite, aiming to address the high brittleness and low damage tolerance problems of carbon fiber composite fan blades (CFCFB). Herein, we present a simple and efficient approach, called the "cationic copolymer-mono micelle-mediated" method, to translate the nacre-inspired structure for developing micelles/ZnO hybrid nanocoating. The hybrid nanocoating was demonstrated to have remarkable characteristics such as ultrafine ZnO sizes, monodispersity, uniformity, and core-shell structure (diameters: ≈45 nm). Additionally, the coating process is simple, solvent-free, and seamlessly integrates with scalable carbon fiber manufacturing. Based on the nacre-inspired interface structure, the CFCFB exhibits high interlaminar strength (99.3 MPa), high stiffness (79 GPa), and high toughness (41.2 MPa m1/2). This study provides a blueprint for bioinspired ultrafine nanostructure design in composites and inspires advanced manufacturing strategies for other promising engineering materials.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.