生物启发超精细混合纳米涂层用于提高柔性制造中复合材料风扇叶片的强度和耐损伤性

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2024-11-04 DOI:10.1016/j.compscitech.2024.110956
Xianhe Cheng , Qigang Han , Yuzhang Huang , Mingdi Shi , Hexuan Shi , Mengxue Ji , Chuncai Yang
{"title":"生物启发超精细混合纳米涂层用于提高柔性制造中复合材料风扇叶片的强度和耐损伤性","authors":"Xianhe Cheng ,&nbsp;Qigang Han ,&nbsp;Yuzhang Huang ,&nbsp;Mingdi Shi ,&nbsp;Hexuan Shi ,&nbsp;Mengxue Ji ,&nbsp;Chuncai Yang","doi":"10.1016/j.compscitech.2024.110956","DOIUrl":null,"url":null,"abstract":"<div><div>The ultrafine mineral bridges/bio-polymer hybrid structure inspired by nacreous is applied to the interface structure design of composite, aiming to address the high brittleness and low damage tolerance problems of carbon fiber composite fan blades (CFCFB). Herein, we present a simple and efficient approach, called the \"cationic copolymer-mono micelle-mediated\" method, to translate the nacre-inspired structure for developing micelles/ZnO hybrid nanocoating. The hybrid nanocoating was demonstrated to have remarkable characteristics such as ultrafine ZnO sizes, monodispersity, uniformity, and core-shell structure (diameters: ≈45 nm). Additionally, the coating process is simple, solvent-free, and seamlessly integrates with scalable carbon fiber manufacturing. Based on the nacre-inspired interface structure, the CFCFB exhibits high interlaminar strength (99.3 MPa), high stiffness (79 GPa), and high toughness (41.2 MPa m<sup>1/2</sup>). This study provides a blueprint for bioinspired ultrafine nanostructure design in composites and inspires advanced manufacturing strategies for other promising engineering materials.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"259 ","pages":"Article 110956"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired ultra-fine hybrid nanocoating for improving strength and damage tolerance of composite fan blades in flexible manufacturing\",\"authors\":\"Xianhe Cheng ,&nbsp;Qigang Han ,&nbsp;Yuzhang Huang ,&nbsp;Mingdi Shi ,&nbsp;Hexuan Shi ,&nbsp;Mengxue Ji ,&nbsp;Chuncai Yang\",\"doi\":\"10.1016/j.compscitech.2024.110956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ultrafine mineral bridges/bio-polymer hybrid structure inspired by nacreous is applied to the interface structure design of composite, aiming to address the high brittleness and low damage tolerance problems of carbon fiber composite fan blades (CFCFB). Herein, we present a simple and efficient approach, called the \\\"cationic copolymer-mono micelle-mediated\\\" method, to translate the nacre-inspired structure for developing micelles/ZnO hybrid nanocoating. The hybrid nanocoating was demonstrated to have remarkable characteristics such as ultrafine ZnO sizes, monodispersity, uniformity, and core-shell structure (diameters: ≈45 nm). Additionally, the coating process is simple, solvent-free, and seamlessly integrates with scalable carbon fiber manufacturing. Based on the nacre-inspired interface structure, the CFCFB exhibits high interlaminar strength (99.3 MPa), high stiffness (79 GPa), and high toughness (41.2 MPa m<sup>1/2</sup>). This study provides a blueprint for bioinspired ultrafine nanostructure design in composites and inspires advanced manufacturing strategies for other promising engineering materials.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"259 \",\"pages\":\"Article 110956\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005268\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005268","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

将受珍珠质启发的超细矿物桥/生物聚合物混合结构应用于复合材料的界面结构设计,旨在解决碳纤维复合材料风扇叶片(CFCFB)的高脆性和低损伤耐受性问题。在此,我们提出了一种简单高效的方法,即 "阳离子共聚物-单胶束介导 "法,将珍珠质启发结构转化为胶束/氧化锌混合纳米涂层的开发。结果表明,这种混合纳米涂层具有超细氧化锌尺寸、单分散性、均匀性和核-壳结构(直径:≈45 nm)等显著特点。此外,该涂层工艺简单、无溶剂,可与可扩展的碳纤维制造工艺无缝集成。基于珍珠光泽启发的界面结构,CFCFB 表现出高层间强度(99.3 兆帕)、高刚度(79 千兆帕)和高韧性(41.2 兆帕 m1/2)。这项研究为复合材料中的生物启发超精细纳米结构设计提供了蓝图,并为其他有前途的工程材料的先进制造策略提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioinspired ultra-fine hybrid nanocoating for improving strength and damage tolerance of composite fan blades in flexible manufacturing
The ultrafine mineral bridges/bio-polymer hybrid structure inspired by nacreous is applied to the interface structure design of composite, aiming to address the high brittleness and low damage tolerance problems of carbon fiber composite fan blades (CFCFB). Herein, we present a simple and efficient approach, called the "cationic copolymer-mono micelle-mediated" method, to translate the nacre-inspired structure for developing micelles/ZnO hybrid nanocoating. The hybrid nanocoating was demonstrated to have remarkable characteristics such as ultrafine ZnO sizes, monodispersity, uniformity, and core-shell structure (diameters: ≈45 nm). Additionally, the coating process is simple, solvent-free, and seamlessly integrates with scalable carbon fiber manufacturing. Based on the nacre-inspired interface structure, the CFCFB exhibits high interlaminar strength (99.3 MPa), high stiffness (79 GPa), and high toughness (41.2 MPa m1/2). This study provides a blueprint for bioinspired ultrafine nanostructure design in composites and inspires advanced manufacturing strategies for other promising engineering materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Egg white-derived nanocomposite microspheres for alveolar bone defects management Dual covalent bond induced high thermally conductive polyimide composite films based on CNT@CN complex filler Anti-interference flexible temperature-sensitive/strain-sensing aerogel fiber for cooperative monitoring of human body temperature and movement information Symmetric sandwich–like rubber composites for “green” electromagnetic interference shielding and thermal insulation Concurrent optimization of continuous carbon fiber-reinforced composites with multi-scale components considering the manufacturing constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1