超顺磁性磁性纳米粒子的合成、封层和应用综述

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL Advances in Colloid and Interface Science Pub Date : 2024-10-23 DOI:10.1016/j.cis.2024.103314
T. Muthukumaran , John Philip
{"title":"超顺磁性磁性纳米粒子的合成、封层和应用综述","authors":"T. Muthukumaran ,&nbsp;John Philip","doi":"10.1016/j.cis.2024.103314","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103314"},"PeriodicalIF":15.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles\",\"authors\":\"T. Muthukumaran ,&nbsp;John Philip\",\"doi\":\"10.1016/j.cis.2024.103314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"334 \",\"pages\":\"Article 103314\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624002379\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002379","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

磁性纳米粒子(MNPs)在生物医学、诊断学、农业、光学、力学、电子学、传感技术、催化和环境修复等多个领域都有大量重要的技术应用,因此备受研究人员的关注。MNP 的超顺磁性在许多应用中都得到了开发,而且在研究许多基本现象方面仍然具有吸引力。本综述的独特之处在于,它深入评述了制备磁性纳米粒子所采用的不同合成方法和纳米粒子的形成机制,用不同的封端剂对其进行功能化,以及应用不同的功能化磁性纳米粒子。其中涉及的重要合成技术包括共沉淀、微波辅助、声化学、溶胶凝胶、微乳液、水热/溶热、热分解和机械化学合成。此外,还讨论了每种技术的优缺点,并用表格显示了制备颗粒的重要结果。本综述涉及的其他方面包括磁性纳米粒子在连续基体中的分散、表面封装对高温热稳定性的影响、铁流体的长期稳定性以及功能化磁性纳米粒子的应用。为了有效利用铁氧体纳米粒子,必须配制出具有所需磁性能的热稳定性和胶体稳定性磁性纳米粒子。封端可提高相变温度和长期胶体稳定性。用特定的结合物种、特定的成分(如药物)或其他功能基团对磁性纳米粒子进行封端或功能化,使其适合应用于生物技术/生物医药领域。最近的研究表明,磁性纳米粒子在治疗和治疗学方面有着巨大的应用空间。不同的应用对纳米粒子的尺寸、形态和物理化学特性(尤其是磁性、功能化和稳定性)的要求各不相同。此外,在精确控制尺寸和以具有成本效益的方式大量生产纳米粒子方面也存在挑战。这篇综述应该是从事磁性纳米材料研究人员的理想材料,也是新手的极佳参考资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
期刊最新文献
Editorial Board The application of machine learning in 3D/4D printed stimuli-responsive hydrogels Flexible coatings based on hydrogel to enhance the biointerface of biomedical implants Antifouling hydrogel with different mechanisms:Antifouling mechanisms, materials, preparations and applications Robust special wettability materials for oil-water separation: Mechanisms and strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1