Hongfei Sun , Liang Zhang , Yuan Wang , Yi Qin , Zhiqiang Xie , Lila Ashi , Ning Xu , Kunlan Huang , Jie Wang , Jigang Huang
{"title":"通过耦合电磁处理提高钛合金的疲劳寿命","authors":"Hongfei Sun , Liang Zhang , Yuan Wang , Yi Qin , Zhiqiang Xie , Lila Ashi , Ning Xu , Kunlan Huang , Jie Wang , Jigang Huang","doi":"10.1016/j.ijfatigue.2024.108676","DOIUrl":null,"url":null,"abstract":"<div><div>TC11 titanium alloy is widely used in the manufacture of key components such as blades of gas turbine and aero engine because of its high specific strength and good processing performance. In the case of gas turbine or aero engine, the fatigue performance of TC11 will directly determine the life of the turbine or engine, and the surface residual stress generated on the alloy during manufacturing often affects the fatigue life of the material. In this study, a new method of coupled electromagnetic treatment (CEMT) was applied to regulate the surface residual stress of the alloy after manufacturing, so as to improve the fatigue life of the TC11. The results show that after the CEMT, the residual compressive stress in the length direction and width direction increased by 63.7% and 56.0% respectively, the fatigue life of the TC11 is increased by 39.9%. The microstructure analysis shows that after CEMT, the width of fatigue striations is significantly reduced. This paper proposes that CEMT can be used as an effective method to adjust the residual stress of materials and improve the fatigue life of titanium alloys. The research is also relevant for improvement of the fatigue life of other alloy materials.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108676"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving fatigue life of a titanium alloy through coupled electromagnetic treatments\",\"authors\":\"Hongfei Sun , Liang Zhang , Yuan Wang , Yi Qin , Zhiqiang Xie , Lila Ashi , Ning Xu , Kunlan Huang , Jie Wang , Jigang Huang\",\"doi\":\"10.1016/j.ijfatigue.2024.108676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>TC11 titanium alloy is widely used in the manufacture of key components such as blades of gas turbine and aero engine because of its high specific strength and good processing performance. In the case of gas turbine or aero engine, the fatigue performance of TC11 will directly determine the life of the turbine or engine, and the surface residual stress generated on the alloy during manufacturing often affects the fatigue life of the material. In this study, a new method of coupled electromagnetic treatment (CEMT) was applied to regulate the surface residual stress of the alloy after manufacturing, so as to improve the fatigue life of the TC11. The results show that after the CEMT, the residual compressive stress in the length direction and width direction increased by 63.7% and 56.0% respectively, the fatigue life of the TC11 is increased by 39.9%. The microstructure analysis shows that after CEMT, the width of fatigue striations is significantly reduced. This paper proposes that CEMT can be used as an effective method to adjust the residual stress of materials and improve the fatigue life of titanium alloys. The research is also relevant for improvement of the fatigue life of other alloy materials.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"191 \",\"pages\":\"Article 108676\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005358\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005358","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Improving fatigue life of a titanium alloy through coupled electromagnetic treatments
TC11 titanium alloy is widely used in the manufacture of key components such as blades of gas turbine and aero engine because of its high specific strength and good processing performance. In the case of gas turbine or aero engine, the fatigue performance of TC11 will directly determine the life of the turbine or engine, and the surface residual stress generated on the alloy during manufacturing often affects the fatigue life of the material. In this study, a new method of coupled electromagnetic treatment (CEMT) was applied to regulate the surface residual stress of the alloy after manufacturing, so as to improve the fatigue life of the TC11. The results show that after the CEMT, the residual compressive stress in the length direction and width direction increased by 63.7% and 56.0% respectively, the fatigue life of the TC11 is increased by 39.9%. The microstructure analysis shows that after CEMT, the width of fatigue striations is significantly reduced. This paper proposes that CEMT can be used as an effective method to adjust the residual stress of materials and improve the fatigue life of titanium alloys. The research is also relevant for improvement of the fatigue life of other alloy materials.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.