评估木质纤维素生物炭对形状稳定复合相变材料热性能的影响

IF 5.6 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Industrial Crops and Products Pub Date : 2024-11-05 DOI:10.1016/j.indcrop.2024.119961
Mingyang Sun , Yanhui Feng , Huishuang Di , Lin Lin
{"title":"评估木质纤维素生物炭对形状稳定复合相变材料热性能的影响","authors":"Mingyang Sun ,&nbsp;Yanhui Feng ,&nbsp;Huishuang Di ,&nbsp;Lin Lin","doi":"10.1016/j.indcrop.2024.119961","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar is suitable for preparing shape stable composite phase change materials (sscPCMs) due to the advantages of cost-effective, environmentally, and sustainability. However, the heat properties of biochar-based sscPCMs were not consistent. To investigate how different types of biochar influence the thermal properties of sscPCMs, three types of sscPCMs were successfully prepared using peanut shell biochar (PSC), poplar wood biochar (PWC), and corn straw biochar (CSC) as framework materials and combined with stearic acid (SA). A comprehensive analysis of the thermal properties of three sscPCMs was performed, taking into account thermal conductivity, phase change latent heat, encapsulation efficiency, crystallization rate, and energy storage efficiency. The study indicated that among the three types of sscPCMs, SA/PWC sscPCMs demonstrated excellent comprehensive performance. The phase change latent heat of SA/PWC reached 100.13 J/g, and the thermal conductivity was 0.38 W/mK. Compared to SA/PSC, the phase change latent heat of SA/PWC increased by 45.96 %, with only a 28.30 % reduction in thermal conductivity. In comparison to SA/CSC, the thermal conductivity of SA/PWC improved by 18.75 %, while the phase change latent heat decreased by only 14.02 %. In addition, the proportions of cellulose, hemicellulose, and lignin played a crucial role in determining the thermal properties of sscPCMs. This study clarified the mechanism by which biochar influences the thermal characteristic of sscPCMs, offering valuable insights for choosing biochar framework materials.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation into the effect of lignocellulosic biochar on the thermal properties of shape stable composite phase change materials\",\"authors\":\"Mingyang Sun ,&nbsp;Yanhui Feng ,&nbsp;Huishuang Di ,&nbsp;Lin Lin\",\"doi\":\"10.1016/j.indcrop.2024.119961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biochar is suitable for preparing shape stable composite phase change materials (sscPCMs) due to the advantages of cost-effective, environmentally, and sustainability. However, the heat properties of biochar-based sscPCMs were not consistent. To investigate how different types of biochar influence the thermal properties of sscPCMs, three types of sscPCMs were successfully prepared using peanut shell biochar (PSC), poplar wood biochar (PWC), and corn straw biochar (CSC) as framework materials and combined with stearic acid (SA). A comprehensive analysis of the thermal properties of three sscPCMs was performed, taking into account thermal conductivity, phase change latent heat, encapsulation efficiency, crystallization rate, and energy storage efficiency. The study indicated that among the three types of sscPCMs, SA/PWC sscPCMs demonstrated excellent comprehensive performance. The phase change latent heat of SA/PWC reached 100.13 J/g, and the thermal conductivity was 0.38 W/mK. Compared to SA/PSC, the phase change latent heat of SA/PWC increased by 45.96 %, with only a 28.30 % reduction in thermal conductivity. In comparison to SA/CSC, the thermal conductivity of SA/PWC improved by 18.75 %, while the phase change latent heat decreased by only 14.02 %. In addition, the proportions of cellulose, hemicellulose, and lignin played a crucial role in determining the thermal properties of sscPCMs. This study clarified the mechanism by which biochar influences the thermal characteristic of sscPCMs, offering valuable insights for choosing biochar framework materials.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024019381\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024019381","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

生物炭具有成本低、环保和可持续等优点,适合制备形状稳定的复合相变材料(sscPCMs)。然而,基于生物炭的 sscPCM 的热性能并不一致。为了研究不同类型的生物炭如何影响 sscPCM 的热性能,研究人员以花生壳生物炭 (PSC)、杨木生物炭 (PWC) 和玉米秸秆生物炭 (CSC) 为骨架材料,结合硬脂酸 (SA) 成功制备了三种 sscPCM。考虑到热导率、相变潜热、封装效率、结晶率和储能效率,对三种 sscPCM 的热性能进行了综合分析。研究表明,在三种 sscPCM 中,SA/PWC sscPCM 的综合性能优异。SA/PWC 的相变潜热达到 100.13 J/g,导热系数为 0.38 W/mK。与 SA/PSC 相比,SA/PWC 的相变潜热增加了 45.96%,导热系数仅降低了 28.30%。与 SA/CSC 相比,SA/PWC 的导热率提高了 18.75%,而相变潜热仅降低了 14.02%。此外,纤维素、半纤维素和木质素的比例在决定 sscPCMs 的热性能方面起着至关重要的作用。这项研究阐明了生物炭影响 sscPCMs 热特性的机制,为选择生物炭框架材料提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation into the effect of lignocellulosic biochar on the thermal properties of shape stable composite phase change materials
Biochar is suitable for preparing shape stable composite phase change materials (sscPCMs) due to the advantages of cost-effective, environmentally, and sustainability. However, the heat properties of biochar-based sscPCMs were not consistent. To investigate how different types of biochar influence the thermal properties of sscPCMs, three types of sscPCMs were successfully prepared using peanut shell biochar (PSC), poplar wood biochar (PWC), and corn straw biochar (CSC) as framework materials and combined with stearic acid (SA). A comprehensive analysis of the thermal properties of three sscPCMs was performed, taking into account thermal conductivity, phase change latent heat, encapsulation efficiency, crystallization rate, and energy storage efficiency. The study indicated that among the three types of sscPCMs, SA/PWC sscPCMs demonstrated excellent comprehensive performance. The phase change latent heat of SA/PWC reached 100.13 J/g, and the thermal conductivity was 0.38 W/mK. Compared to SA/PSC, the phase change latent heat of SA/PWC increased by 45.96 %, with only a 28.30 % reduction in thermal conductivity. In comparison to SA/CSC, the thermal conductivity of SA/PWC improved by 18.75 %, while the phase change latent heat decreased by only 14.02 %. In addition, the proportions of cellulose, hemicellulose, and lignin played a crucial role in determining the thermal properties of sscPCMs. This study clarified the mechanism by which biochar influences the thermal characteristic of sscPCMs, offering valuable insights for choosing biochar framework materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Crops and Products
Industrial Crops and Products 农林科学-农业工程
CiteScore
9.50
自引率
8.50%
发文量
1518
审稿时长
43 days
期刊介绍: Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.
期刊最新文献
Integrated physiological, transcriptomic and metabolomic analyses of glossy mutant under drought stress in rapeseed (Brassica napus L.) Carboxylation of lignin by oxidation with hydrogen peroxide and its use as emulsion stabilizer Investigation of crop straw for edible and medicinal fungi cultivation: Assessment of lignocellulose preprocessing and spent substrate biofuel properties Enhanced mechanism of physical and mechanical properties of bamboo scrimber prepared by roller-pressing impregnation method Untargeted metabolomics analysis revealed metabolite dynamics during the development and processing of Rosa rugosa flowers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1