Philipp Gaggl , Jürgen Burin , Andreas Gsponer , Simon-Emanuel Waid , Richard Thalmeier , Thomas Bergauer
{"title":"4H-SiC 二极管中辐射诱导缺陷的 TCAD 建模","authors":"Philipp Gaggl , Jürgen Burin , Andreas Gsponer , Simon-Emanuel Waid , Richard Thalmeier , Thomas Bergauer","doi":"10.1016/j.nima.2024.170015","DOIUrl":null,"url":null,"abstract":"<div><div>4H silicon carbide (SiC) has several advantageous properties compared to silicon (Si) making it an appealing detector material, such as a larger charge carrier saturation velocity, bandgap, and thermal conductivity. While the current understanding of material and model parameters suffices to simulate unirradiated 4H-SiC using TCAD software, configurations accurately predicting performance degradation after high levels of irradiation due to induced traps and recombination centers do not exist. Despite increasing efforts to characterize the introduction and nature of such defects, published results are often contradictory. This work presents a bulk radiation damage model for TCAD simulation based on existing literature and optimized on measurement results of neutron-irradiated 4H-SiC pad diodes. Experimentally observed effects, such as flattening of the detector capacitance, loss of rectification properties, and degradation in charge collection efficiency, are reproduced. The EH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> center is suggested as a major lifetime killer in 4H-SiC, while the still controversial assumption of the EH<span><math><msub><mrow></mrow><mrow><mtext>6,7</mtext></mrow></msub></math></span> deep-level being of donor type is reinforced.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1070 ","pages":"Article 170015"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCAD modeling of radiation-induced defects in 4H-SiC diodes\",\"authors\":\"Philipp Gaggl , Jürgen Burin , Andreas Gsponer , Simon-Emanuel Waid , Richard Thalmeier , Thomas Bergauer\",\"doi\":\"10.1016/j.nima.2024.170015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>4H silicon carbide (SiC) has several advantageous properties compared to silicon (Si) making it an appealing detector material, such as a larger charge carrier saturation velocity, bandgap, and thermal conductivity. While the current understanding of material and model parameters suffices to simulate unirradiated 4H-SiC using TCAD software, configurations accurately predicting performance degradation after high levels of irradiation due to induced traps and recombination centers do not exist. Despite increasing efforts to characterize the introduction and nature of such defects, published results are often contradictory. This work presents a bulk radiation damage model for TCAD simulation based on existing literature and optimized on measurement results of neutron-irradiated 4H-SiC pad diodes. Experimentally observed effects, such as flattening of the detector capacitance, loss of rectification properties, and degradation in charge collection efficiency, are reproduced. The EH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> center is suggested as a major lifetime killer in 4H-SiC, while the still controversial assumption of the EH<span><math><msub><mrow></mrow><mrow><mtext>6,7</mtext></mrow></msub></math></span> deep-level being of donor type is reinforced.</div></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":\"1070 \",\"pages\":\"Article 170015\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168900224009410\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224009410","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
TCAD modeling of radiation-induced defects in 4H-SiC diodes
4H silicon carbide (SiC) has several advantageous properties compared to silicon (Si) making it an appealing detector material, such as a larger charge carrier saturation velocity, bandgap, and thermal conductivity. While the current understanding of material and model parameters suffices to simulate unirradiated 4H-SiC using TCAD software, configurations accurately predicting performance degradation after high levels of irradiation due to induced traps and recombination centers do not exist. Despite increasing efforts to characterize the introduction and nature of such defects, published results are often contradictory. This work presents a bulk radiation damage model for TCAD simulation based on existing literature and optimized on measurement results of neutron-irradiated 4H-SiC pad diodes. Experimentally observed effects, such as flattening of the detector capacitance, loss of rectification properties, and degradation in charge collection efficiency, are reproduced. The EH center is suggested as a major lifetime killer in 4H-SiC, while the still controversial assumption of the EH deep-level being of donor type is reinforced.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.