知道去哪里:让 LLM 成为相关的、负责任的、值得信赖的搜索者

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Decision Support Systems Pub Date : 2024-10-28 DOI:10.1016/j.dss.2024.114354
Xiang Shi, Jiawei Liu, Yinpeng Liu, Qikai Cheng, Wei Lu
{"title":"知道去哪里:让 LLM 成为相关的、负责任的、值得信赖的搜索者","authors":"Xiang Shi,&nbsp;Jiawei Liu,&nbsp;Yinpeng Liu,&nbsp;Qikai Cheng,&nbsp;Wei Lu","doi":"10.1016/j.dss.2024.114354","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of Large Language Models (LLMs) has shown the potential to improve relevance and provide direct answers in web searches. However, challenges arise in validating the reliability of generated results and the credibility of contributing sources due to the limitations of traditional information retrieval algorithms and the LLM hallucination problem. We aim to transform LLM into a relevant, responsible, and trustworthy searcher in response to these challenges. Rather than following the traditional generative retrieval approach, simply allowing the LLM to summarize the search results, we propose a novel generative retrieval framework leveraging the knowledge of LLMs to foster a direct link between queries and web sources. This framework reforms the retrieval process of the traditional generative retrieval framework by integrating an LLM retriever, and it redesigns the validator while adding an optimizer to ensure the reliability of the retrieved web sources and evidence sentences. Extensive experiments show that our method outperforms several SOTA methods in relevance, responsibility, and trustfulness. It improves search result validity and precision by 2.54 % and 1.05 % over larger-parameter-scale LLM-based systems. Furthermore, it demonstrates significant advantages over traditional frameworks in question-answering and downstream tasks.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"188 ","pages":"Article 114354"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Know where to go: Make LLM a relevant, responsible, and trustworthy searchers\",\"authors\":\"Xiang Shi,&nbsp;Jiawei Liu,&nbsp;Yinpeng Liu,&nbsp;Qikai Cheng,&nbsp;Wei Lu\",\"doi\":\"10.1016/j.dss.2024.114354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The advent of Large Language Models (LLMs) has shown the potential to improve relevance and provide direct answers in web searches. However, challenges arise in validating the reliability of generated results and the credibility of contributing sources due to the limitations of traditional information retrieval algorithms and the LLM hallucination problem. We aim to transform LLM into a relevant, responsible, and trustworthy searcher in response to these challenges. Rather than following the traditional generative retrieval approach, simply allowing the LLM to summarize the search results, we propose a novel generative retrieval framework leveraging the knowledge of LLMs to foster a direct link between queries and web sources. This framework reforms the retrieval process of the traditional generative retrieval framework by integrating an LLM retriever, and it redesigns the validator while adding an optimizer to ensure the reliability of the retrieved web sources and evidence sentences. Extensive experiments show that our method outperforms several SOTA methods in relevance, responsibility, and trustfulness. It improves search result validity and precision by 2.54 % and 1.05 % over larger-parameter-scale LLM-based systems. Furthermore, it demonstrates significant advantages over traditional frameworks in question-answering and downstream tasks.</div></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"188 \",\"pages\":\"Article 114354\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923624001878\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624001878","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大语言模型(LLMs)的出现显示了在网络搜索中提高相关性和提供直接答案的潜力。然而,由于传统信息检索算法的局限性和 LLM 的幻觉问题,在验证生成结果的可靠性和贡献来源的可信度方面出现了挑战。我们的目标是将 LLM 转变为相关、负责和可信的搜索器,以应对这些挑战。我们提出了一个新颖的生成式检索框架,而不是沿用传统的生成式检索方法,简单地让 LLM 总结搜索结果,而是利用 LLM 的知识在查询和网络来源之间建立直接联系。该框架通过整合 LLM 检索器改革了传统生成式检索框架的检索流程,并重新设计了验证器,同时添加了优化器,以确保检索到的网络来源和证据句子的可靠性。大量实验表明,我们的方法在相关性、责任性和可信度方面都优于几种 SOTA 方法。与参数规模更大的基于 LLM 的系统相比,它在搜索结果的有效性和精确性方面分别提高了 2.54 % 和 1.05 %。此外,在问题解答和下游任务方面,它比传统框架具有明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Know where to go: Make LLM a relevant, responsible, and trustworthy searchers
The advent of Large Language Models (LLMs) has shown the potential to improve relevance and provide direct answers in web searches. However, challenges arise in validating the reliability of generated results and the credibility of contributing sources due to the limitations of traditional information retrieval algorithms and the LLM hallucination problem. We aim to transform LLM into a relevant, responsible, and trustworthy searcher in response to these challenges. Rather than following the traditional generative retrieval approach, simply allowing the LLM to summarize the search results, we propose a novel generative retrieval framework leveraging the knowledge of LLMs to foster a direct link between queries and web sources. This framework reforms the retrieval process of the traditional generative retrieval framework by integrating an LLM retriever, and it redesigns the validator while adding an optimizer to ensure the reliability of the retrieved web sources and evidence sentences. Extensive experiments show that our method outperforms several SOTA methods in relevance, responsibility, and trustfulness. It improves search result validity and precision by 2.54 % and 1.05 % over larger-parameter-scale LLM-based systems. Furthermore, it demonstrates significant advantages over traditional frameworks in question-answering and downstream tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
期刊最新文献
A comparative analysis of the effect of initiative risk statement versus passive risk disclosure on the financing performance of Kickstarter campaigns DeepSecure: A computational design science approach for interpretable threat hunting in cybersecurity decision making Editorial Board Effects of visual-preview and information-sidedness features on website persuasiveness The evolution of organizations and stakeholders for metaverse ecosystems: Editorial for the special issue on metaverse part 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1