Yajun Wang, Wenyu Li, Ruihua Liu, Zhengliang Deng, Qiang Gan
{"title":"三氟化铈对纳米铝粉燃烧特性的影响","authors":"Yajun Wang, Wenyu Li, Ruihua Liu, Zhengliang Deng, Qiang Gan","doi":"10.1016/j.combustflame.2024.113831","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate the influence of cerium trifluoride (CeF<sub>3</sub>) on the combustion performance of nano aluminum powder (n-Al), different mass fractions of CeF<sub>3</sub> were physically mixed into the n-Al powder. Research results show that CeF<sub>3</sub> can significantly increase the main exothermic heat of n-Al powder. When the CeF<sub>3</sub> content was 10 %, the heat release reached 9579.90 J·g<sup>‒1</sup>. However, as the CeF<sub>3</sub> content increased, the heat release of the sample decreased. Thermal analysis results of Al/CeF<sub>3</sub> and Al/CeO<sub>2</sub> infer that this was due to the action of CeO<sub>2</sub> generated by pre-ignition reaction for Al/CeF<sub>3</sub>–15. The presence of CeO<sub>2</sub> inhibited the reaction degree of Al, thereby reducing the heat release. Meanwhile, as the proportion of CeF<sub>3</sub> increased, the peak temperature of the main reaction exothermic peak was delayed, and more energy input was required for the oxidation of n-Al powder. Combustion experiments show that the addition of CeF<sub>3</sub> greatly shortened the combustion time of n-Al powder, with the shortest time being 4.43 s. In addition, due to the excellent storage and release oxygen capability of CeO<sub>2</sub>, multiple micro-explosions occurred in the composite material during combustion.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113831"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of cerium trifluoride on combustion properties of nano-aluminum powder\",\"authors\":\"Yajun Wang, Wenyu Li, Ruihua Liu, Zhengliang Deng, Qiang Gan\",\"doi\":\"10.1016/j.combustflame.2024.113831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To investigate the influence of cerium trifluoride (CeF<sub>3</sub>) on the combustion performance of nano aluminum powder (n-Al), different mass fractions of CeF<sub>3</sub> were physically mixed into the n-Al powder. Research results show that CeF<sub>3</sub> can significantly increase the main exothermic heat of n-Al powder. When the CeF<sub>3</sub> content was 10 %, the heat release reached 9579.90 J·g<sup>‒1</sup>. However, as the CeF<sub>3</sub> content increased, the heat release of the sample decreased. Thermal analysis results of Al/CeF<sub>3</sub> and Al/CeO<sub>2</sub> infer that this was due to the action of CeO<sub>2</sub> generated by pre-ignition reaction for Al/CeF<sub>3</sub>–15. The presence of CeO<sub>2</sub> inhibited the reaction degree of Al, thereby reducing the heat release. Meanwhile, as the proportion of CeF<sub>3</sub> increased, the peak temperature of the main reaction exothermic peak was delayed, and more energy input was required for the oxidation of n-Al powder. Combustion experiments show that the addition of CeF<sub>3</sub> greatly shortened the combustion time of n-Al powder, with the shortest time being 4.43 s. In addition, due to the excellent storage and release oxygen capability of CeO<sub>2</sub>, multiple micro-explosions occurred in the composite material during combustion.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"271 \",\"pages\":\"Article 113831\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024005406\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024005406","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of cerium trifluoride on combustion properties of nano-aluminum powder
To investigate the influence of cerium trifluoride (CeF3) on the combustion performance of nano aluminum powder (n-Al), different mass fractions of CeF3 were physically mixed into the n-Al powder. Research results show that CeF3 can significantly increase the main exothermic heat of n-Al powder. When the CeF3 content was 10 %, the heat release reached 9579.90 J·g‒1. However, as the CeF3 content increased, the heat release of the sample decreased. Thermal analysis results of Al/CeF3 and Al/CeO2 infer that this was due to the action of CeO2 generated by pre-ignition reaction for Al/CeF3–15. The presence of CeO2 inhibited the reaction degree of Al, thereby reducing the heat release. Meanwhile, as the proportion of CeF3 increased, the peak temperature of the main reaction exothermic peak was delayed, and more energy input was required for the oxidation of n-Al powder. Combustion experiments show that the addition of CeF3 greatly shortened the combustion time of n-Al powder, with the shortest time being 4.43 s. In addition, due to the excellent storage and release oxygen capability of CeO2, multiple micro-explosions occurred in the composite material during combustion.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.