人类和小鼠衰老过程中 TCA 循环基因的表达减少

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2024-10-29 DOI:10.1016/j.bbrc.2024.150917
Chao Zhang , Zhiyao Fu , Ren Zhang
{"title":"人类和小鼠衰老过程中 TCA 循环基因的表达减少","authors":"Chao Zhang ,&nbsp;Zhiyao Fu ,&nbsp;Ren Zhang","doi":"10.1016/j.bbrc.2024.150917","DOIUrl":null,"url":null,"abstract":"<div><div>Aging is associated with a decline in physiological functions and an increased risk of metabolic disorders. The liver, a key organ in metabolism, undergoes significant changes during aging that can contribute to systemic metabolic dysfunction. This study investigates the expression of genes involved in the tricarboxylic acid (TCA) cycle, a critical pathway for energy production, in the aging liver. We analyzed RNA sequencing data from the Genotype-Tissue Expression (GTEx) project to assess age-related changes in gene expression in the human liver. To validate our findings, we conducted complementary studies in young and old mice, examining the expression of key TCA cycle genes using quantitative real-time PCR. Our analysis of the GTEx dataset revealed a significant reduction in the expression of many genes that are critical for metabolism, including fat mass and obesity associated (FTO) and adiponectin receptor 1 (ADIPOR1). The most overrepresented pathway among the statistically enriched ones was the TCA cycle, with multiple genes exhibiting downregulation in older humans. This reduction was consistent with findings in aging mice, which also showed decreased expression of several TCA cycle genes. These results suggest a conserved pattern of age-related downregulation of TCA cycle, potentially leading to diminished mitochondrial function and energy production in the liver. The reduced expression of TCA cycle genes in the aging liver may contribute to metabolic dysfunction and increased susceptibility to age-related diseases. Understanding the molecular basis of these changes provides new insights into the aging process and highlights potential targets for interventions aimed at promoting healthy aging and preventing metabolic disorders.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"738 ","pages":"Article 150917"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced expressions of TCA cycle genes during aging in humans and mice\",\"authors\":\"Chao Zhang ,&nbsp;Zhiyao Fu ,&nbsp;Ren Zhang\",\"doi\":\"10.1016/j.bbrc.2024.150917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aging is associated with a decline in physiological functions and an increased risk of metabolic disorders. The liver, a key organ in metabolism, undergoes significant changes during aging that can contribute to systemic metabolic dysfunction. This study investigates the expression of genes involved in the tricarboxylic acid (TCA) cycle, a critical pathway for energy production, in the aging liver. We analyzed RNA sequencing data from the Genotype-Tissue Expression (GTEx) project to assess age-related changes in gene expression in the human liver. To validate our findings, we conducted complementary studies in young and old mice, examining the expression of key TCA cycle genes using quantitative real-time PCR. Our analysis of the GTEx dataset revealed a significant reduction in the expression of many genes that are critical for metabolism, including fat mass and obesity associated (FTO) and adiponectin receptor 1 (ADIPOR1). The most overrepresented pathway among the statistically enriched ones was the TCA cycle, with multiple genes exhibiting downregulation in older humans. This reduction was consistent with findings in aging mice, which also showed decreased expression of several TCA cycle genes. These results suggest a conserved pattern of age-related downregulation of TCA cycle, potentially leading to diminished mitochondrial function and energy production in the liver. The reduced expression of TCA cycle genes in the aging liver may contribute to metabolic dysfunction and increased susceptibility to age-related diseases. Understanding the molecular basis of these changes provides new insights into the aging process and highlights potential targets for interventions aimed at promoting healthy aging and preventing metabolic disorders.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"738 \",\"pages\":\"Article 150917\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24014530\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24014530","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

衰老与生理机能下降和代谢紊乱风险增加有关。肝脏是新陈代谢的关键器官,在衰老过程中会发生显著变化,从而导致全身代谢功能障碍。本研究调查了衰老肝脏中参与三羧酸循环(TCA)的基因表达情况,三羧酸循环是产生能量的关键途径。我们分析了基因型-组织表达(GTEx)项目的 RNA 测序数据,以评估人类肝脏中与年龄相关的基因表达变化。为了验证我们的研究结果,我们在年轻小鼠和老年小鼠中进行了补充研究,使用定量实时 PCR 检测了关键 TCA 循环基因的表达。我们对 GTEx 数据集的分析表明,许多对新陈代谢至关重要的基因,包括脂肪量和肥胖相关基因(FTO)和脂肪连接素受体 1(ADIPOR1)的表达明显减少。在统计富集的途径中,代表性最高的是 TCA 循环,有多个基因在老年人体内出现下调。这种下调与衰老小鼠的研究结果一致,后者也显示出多个 TCA 循环基因的表达减少。这些结果表明,与年龄相关的 TCA 循环基因表达下调是一种保守的模式,可能会导致肝脏线粒体功能和能量生成减弱。在衰老的肝脏中,TCA 循环基因表达的减少可能会导致代谢功能障碍和对老年相关疾病的易感性增加。了解这些变化的分子基础可为了解衰老过程提供新的视角,并突出旨在促进健康衰老和预防代谢紊乱的潜在干预目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced expressions of TCA cycle genes during aging in humans and mice
Aging is associated with a decline in physiological functions and an increased risk of metabolic disorders. The liver, a key organ in metabolism, undergoes significant changes during aging that can contribute to systemic metabolic dysfunction. This study investigates the expression of genes involved in the tricarboxylic acid (TCA) cycle, a critical pathway for energy production, in the aging liver. We analyzed RNA sequencing data from the Genotype-Tissue Expression (GTEx) project to assess age-related changes in gene expression in the human liver. To validate our findings, we conducted complementary studies in young and old mice, examining the expression of key TCA cycle genes using quantitative real-time PCR. Our analysis of the GTEx dataset revealed a significant reduction in the expression of many genes that are critical for metabolism, including fat mass and obesity associated (FTO) and adiponectin receptor 1 (ADIPOR1). The most overrepresented pathway among the statistically enriched ones was the TCA cycle, with multiple genes exhibiting downregulation in older humans. This reduction was consistent with findings in aging mice, which also showed decreased expression of several TCA cycle genes. These results suggest a conserved pattern of age-related downregulation of TCA cycle, potentially leading to diminished mitochondrial function and energy production in the liver. The reduced expression of TCA cycle genes in the aging liver may contribute to metabolic dysfunction and increased susceptibility to age-related diseases. Understanding the molecular basis of these changes provides new insights into the aging process and highlights potential targets for interventions aimed at promoting healthy aging and preventing metabolic disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
The comparative research of aspirin-ethanol induced acute gastric mucosal injury in sprague dawley rats and hypertensive rats Activation of the yeast MAP kinase, Slt2, protects against TDP-43 and TDP-25 toxicity in the Saccharomyces cerevisiae proteinopathy model Development of an indirect ELISA based on the VP1 protein for detection of antibodies against water buffalo Hunnivirus Liver-specific deletion of Agpat5 protects against liquid sucrose-induced hyperinsulinemia and glucose intolerance UV radiation enhanced encapsulation of superparamagnetic iron oxide nanoparticles (MNPs) in microparticles derived from tumor repopulating cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1