用于 CT 全脑分割的结构增强型无监督领域自适应技术

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-04-19 DOI:10.1109/TRPMS.2024.3391285
Yixin Chen;Yajun Gao;Lei Zhu;Jianan Li;Yan Wang;Jiakui Hu;Hongbin Han;Yanye Lu;Zhaoheng Xie
{"title":"用于 CT 全脑分割的结构增强型无监督领域自适应技术","authors":"Yixin Chen;Yajun Gao;Lei Zhu;Jianan Li;Yan Wang;Jiakui Hu;Hongbin Han;Yanye Lu;Zhaoheng Xie","doi":"10.1109/TRPMS.2024.3391285","DOIUrl":null,"url":null,"abstract":"Early and accurate identification of intracranial hemorrhage (ICH) is crucial for treatment, but the inherently low-contrast resolution of computed tomography (CT) imaging poses challenges in identification of specific cerebral regions, impacting effective and timely clinical decision-making. We propose brain structure-enhanced domain adaptation (BraSEDA), a CT-based unsupervised domain adaptation (UDA) model designed to assist in the identification of brain regions. BraSEDA framework utilizes a cross-modal instance normalization (CMIN) module for enhancing CT image structural features and creating high-quality pseudo magnetic resonance (MR) images. A multilevel CMIN architecture is also introduced for further improvement. The BraSEDA framework improved the quality of pseudo MR images in head CT to MR domain adaptation task, as reflected by the lowest-Fréchet inception distance scores \n<inline-formula> <tex-math>$95.0\\pm 12.1$ </tex-math></inline-formula>\n (p-value < 0.001) with and highest-BC scores \n<inline-formula> <tex-math>$0.915\\pm 0.396$ </tex-math></inline-formula>\n (p-value <0.01),>https://github.com/YixinChen-AI/BraSEDA</uri>\n.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"926-938"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Enhanced Unsupervised Domain Adaptation for CT Whole-Brain Segmentation\",\"authors\":\"Yixin Chen;Yajun Gao;Lei Zhu;Jianan Li;Yan Wang;Jiakui Hu;Hongbin Han;Yanye Lu;Zhaoheng Xie\",\"doi\":\"10.1109/TRPMS.2024.3391285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early and accurate identification of intracranial hemorrhage (ICH) is crucial for treatment, but the inherently low-contrast resolution of computed tomography (CT) imaging poses challenges in identification of specific cerebral regions, impacting effective and timely clinical decision-making. We propose brain structure-enhanced domain adaptation (BraSEDA), a CT-based unsupervised domain adaptation (UDA) model designed to assist in the identification of brain regions. BraSEDA framework utilizes a cross-modal instance normalization (CMIN) module for enhancing CT image structural features and creating high-quality pseudo magnetic resonance (MR) images. A multilevel CMIN architecture is also introduced for further improvement. The BraSEDA framework improved the quality of pseudo MR images in head CT to MR domain adaptation task, as reflected by the lowest-Fréchet inception distance scores \\n<inline-formula> <tex-math>$95.0\\\\pm 12.1$ </tex-math></inline-formula>\\n (p-value < 0.001) with and highest-BC scores \\n<inline-formula> <tex-math>$0.915\\\\pm 0.396$ </tex-math></inline-formula>\\n (p-value <0.01),>https://github.com/YixinChen-AI/BraSEDA</uri>\\n.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"8 8\",\"pages\":\"926-938\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505916/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505916/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

早期准确识别颅内出血(ICH)对治疗至关重要,但计算机断层扫描(CT)成像固有的低对比分辨率给识别特定脑区带来了挑战,影响了有效及时的临床决策。我们提出了脑结构增强域适配(BraSEDA),这是一种基于 CT 的无监督域适配(UDA)模型,旨在帮助识别脑区。BraSEDA 框架利用跨模态实例归一化(CMIN)模块来增强 CT 图像的结构特征,并创建高质量的伪磁共振(MR)图像。为了进一步改进,还引入了多级 CMIN 架构。BraSEDA框架提高了头部CT到MR域适应任务中伪MR图像的质量,具体表现为最低弗雷谢特起始距离得分$95.0\pm 12.1$(p值<0.001),最高BC得分$0.915\pm 0.396$(p值https://github.com/YixinChen-AI/BraSEDA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure-Enhanced Unsupervised Domain Adaptation for CT Whole-Brain Segmentation
Early and accurate identification of intracranial hemorrhage (ICH) is crucial for treatment, but the inherently low-contrast resolution of computed tomography (CT) imaging poses challenges in identification of specific cerebral regions, impacting effective and timely clinical decision-making. We propose brain structure-enhanced domain adaptation (BraSEDA), a CT-based unsupervised domain adaptation (UDA) model designed to assist in the identification of brain regions. BraSEDA framework utilizes a cross-modal instance normalization (CMIN) module for enhancing CT image structural features and creating high-quality pseudo magnetic resonance (MR) images. A multilevel CMIN architecture is also introduced for further improvement. The BraSEDA framework improved the quality of pseudo MR images in head CT to MR domain adaptation task, as reflected by the lowest-Fréchet inception distance scores $95.0\pm 12.1$ (p-value < 0.001) with and highest-BC scores $0.915\pm 0.396$ (p-value <0.01),>https://github.com/YixinChen-AI/BraSEDA .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Three-Gamma Imaging in Nuclear Medicine: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1