利用权重映射策略和输出变换提高基于 STT-MRAM 的内存计算精度

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2024-10-11 DOI:10.1109/JXCDC.2024.3478360
Xianggao Wang;Na Wei;Shifan Gao;Wenhao Wu;Yi Zhao
{"title":"利用权重映射策略和输出变换提高基于 STT-MRAM 的内存计算精度","authors":"Xianggao Wang;Na Wei;Shifan Gao;Wenhao Wu;Yi Zhao","doi":"10.1109/JXCDC.2024.3478360","DOIUrl":null,"url":null,"abstract":"This work presents an analog computing-in-memory (CiM) macro with spin-transfer torque magnetic random access memory (STT-MRAM) and 28-nm CMOS technology. The adopted CiM bitcell uses a differential scheme and balances the input resistance to minimize the nonideal factors during multiply-accumulate (MAC) operations. Specialized peripheral circuits were designed for the current-scheme CiM architecture. More importantly, strategies of accuracy improvement were innovatively proposed as follows: 1) mapping most significant bit (MSB) to the far side of the MRAM array and 2) output linear transformation based on the reference columns. Circuit-level simulation verified the functionality and performance improvement of the CiM macro based on the MNIST and CIFAR-10 datasets, realizing a 3% and 5% accuracy loss compared with the benchmark, respectively. The 640-GOPS (8 bit) throughput, 34.6-TOPS/mm2 area compactness, and 83.3-TOPS/W energy efficiency demonstrate the advantages of STT-MRAM CiM in the coming AI era.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10714384","citationCount":"0","resultStr":"{\"title\":\"Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory\",\"authors\":\"Xianggao Wang;Na Wei;Shifan Gao;Wenhao Wu;Yi Zhao\",\"doi\":\"10.1109/JXCDC.2024.3478360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an analog computing-in-memory (CiM) macro with spin-transfer torque magnetic random access memory (STT-MRAM) and 28-nm CMOS technology. The adopted CiM bitcell uses a differential scheme and balances the input resistance to minimize the nonideal factors during multiply-accumulate (MAC) operations. Specialized peripheral circuits were designed for the current-scheme CiM architecture. More importantly, strategies of accuracy improvement were innovatively proposed as follows: 1) mapping most significant bit (MSB) to the far side of the MRAM array and 2) output linear transformation based on the reference columns. Circuit-level simulation verified the functionality and performance improvement of the CiM macro based on the MNIST and CIFAR-10 datasets, realizing a 3% and 5% accuracy loss compared with the benchmark, respectively. The 640-GOPS (8 bit) throughput, 34.6-TOPS/mm2 area compactness, and 83.3-TOPS/W energy efficiency demonstrate the advantages of STT-MRAM CiM in the coming AI era.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10714384\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10714384/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10714384/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用自旋转移力矩磁性随机存取存储器(STT-MRAM)和 28 纳米 CMOS 技术,提出了一种模拟计算内存(CiM)宏。所采用的 CiM 位元组使用差分方案并平衡输入电阻,以最大限度地减少乘积 (MAC) 运算过程中的非理想因素。针对电流方案 CiM 架构设计了专用外围电路。更重要的是,创新性地提出了以下提高精度的策略:1) 将最重要位 (MSB) 映射到 MRAM 阵列的远端;2) 基于参考列的输出线性变换。电路级仿真验证了基于 MNIST 和 CIFAR-10 数据集的 CiM 宏的功能和性能改进,与基准相比分别实现了 3% 和 5% 的精度损失。640-GOPS(8 位)的吞吐量、34.6-TOPS/mm2 的面积紧凑性和 83.3-TOPS/W 的能效证明了 STT-MRAM CiM 在即将到来的人工智能时代的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory
This work presents an analog computing-in-memory (CiM) macro with spin-transfer torque magnetic random access memory (STT-MRAM) and 28-nm CMOS technology. The adopted CiM bitcell uses a differential scheme and balances the input resistance to minimize the nonideal factors during multiply-accumulate (MAC) operations. Specialized peripheral circuits were designed for the current-scheme CiM architecture. More importantly, strategies of accuracy improvement were innovatively proposed as follows: 1) mapping most significant bit (MSB) to the far side of the MRAM array and 2) output linear transformation based on the reference columns. Circuit-level simulation verified the functionality and performance improvement of the CiM macro based on the MNIST and CIFAR-10 datasets, realizing a 3% and 5% accuracy loss compared with the benchmark, respectively. The 640-GOPS (8 bit) throughput, 34.6-TOPS/mm2 area compactness, and 83.3-TOPS/W energy efficiency demonstrate the advantages of STT-MRAM CiM in the coming AI era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1