{"title":"利用 NSGA-III 优化城市步行能力,促进可持续城市规划和建设","authors":"Swati Agrawal, Sanjay Singh Jadon","doi":"10.1007/s42107-024-01170-1","DOIUrl":null,"url":null,"abstract":"<div><p>Urban walkability is essential for sustainable city planning and construction, fostering public health, environmental benefits, and social equity. However, optimizing walkability involves balancing multiple, often conflicting objectives, such as accessibility, safety, environmental quality, and social inclusivity. This paper presents a novel approach to optimizing urban walkability using the Non-dominated Sorting Genetic Algorithm III (NSGA-III). By applying NSGA-III, we address the complexities of multi-objective optimization in urban environments, generating a set of Pareto-optimal solutions that cater to diverse planning priorities. A case study in a mid-sized urban area demonstrates the effectiveness of the proposed methodology. The results highlight key trade-offs between objectives, such as the balance between accessibility and safety or environmental quality and social inclusivity. The findings provide urban planners with a robust decision-making framework that supports the creation of walkable, sustainable cities. The study concludes with policy recommendations to enhance urban walkability and suggests avenues for future research, including the integration of economic considerations and the application of this approach in larger, more complex urban settings. This research contributes to the field of urban planning by offering a comprehensive tool for optimizing walkability, ultimately promoting more livable and sustainable cities.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"6189 - 6201"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing urban walkability with NSGA-III for sustainable city planning and construction\",\"authors\":\"Swati Agrawal, Sanjay Singh Jadon\",\"doi\":\"10.1007/s42107-024-01170-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban walkability is essential for sustainable city planning and construction, fostering public health, environmental benefits, and social equity. However, optimizing walkability involves balancing multiple, often conflicting objectives, such as accessibility, safety, environmental quality, and social inclusivity. This paper presents a novel approach to optimizing urban walkability using the Non-dominated Sorting Genetic Algorithm III (NSGA-III). By applying NSGA-III, we address the complexities of multi-objective optimization in urban environments, generating a set of Pareto-optimal solutions that cater to diverse planning priorities. A case study in a mid-sized urban area demonstrates the effectiveness of the proposed methodology. The results highlight key trade-offs between objectives, such as the balance between accessibility and safety or environmental quality and social inclusivity. The findings provide urban planners with a robust decision-making framework that supports the creation of walkable, sustainable cities. The study concludes with policy recommendations to enhance urban walkability and suggests avenues for future research, including the integration of economic considerations and the application of this approach in larger, more complex urban settings. This research contributes to the field of urban planning by offering a comprehensive tool for optimizing walkability, ultimately promoting more livable and sustainable cities.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"25 8\",\"pages\":\"6189 - 6201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-024-01170-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01170-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Optimizing urban walkability with NSGA-III for sustainable city planning and construction
Urban walkability is essential for sustainable city planning and construction, fostering public health, environmental benefits, and social equity. However, optimizing walkability involves balancing multiple, often conflicting objectives, such as accessibility, safety, environmental quality, and social inclusivity. This paper presents a novel approach to optimizing urban walkability using the Non-dominated Sorting Genetic Algorithm III (NSGA-III). By applying NSGA-III, we address the complexities of multi-objective optimization in urban environments, generating a set of Pareto-optimal solutions that cater to diverse planning priorities. A case study in a mid-sized urban area demonstrates the effectiveness of the proposed methodology. The results highlight key trade-offs between objectives, such as the balance between accessibility and safety or environmental quality and social inclusivity. The findings provide urban planners with a robust decision-making framework that supports the creation of walkable, sustainable cities. The study concludes with policy recommendations to enhance urban walkability and suggests avenues for future research, including the integration of economic considerations and the application of this approach in larger, more complex urban settings. This research contributes to the field of urban planning by offering a comprehensive tool for optimizing walkability, ultimately promoting more livable and sustainable cities.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.