Parton 密度理论的可解释人工智能分类

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2024-11-05 DOI:10.1007/JHEP11(2024)007
Brandon Kriesten, Jonathan Gomprecht, T. J. Hobbs
{"title":"Parton 密度理论的可解释人工智能分类","authors":"Brandon Kriesten,&nbsp;Jonathan Gomprecht,&nbsp;T. J. Hobbs","doi":"10.1007/JHEP11(2024)007","DOIUrl":null,"url":null,"abstract":"<p>Quantitatively connecting properties of parton distribution functions (PDFs, or parton densities) to the theoretical assumptions made within the QCD analyses which produce them has been a longstanding problem in HEP phenomenology. To confront this challenge, we introduce an ML-based explainability framework, XAI4PDF, to classify PDFs by parton flavor or underlying theoretical model using ResNet-like neural networks (NNs). By leveraging the differentiable nature of ResNet models, this approach deploys guided backpropagation to dissect relevant features of fitted PDFs, identifying <i>x</i>-dependent signatures of PDFs important to the ML model classifications. By applying our framework, we are able to sort PDFs according to the analysis which produced them while constructing quantitative, human-readable maps locating the <i>x</i> regions most affected by the internal theory assumptions going into each analysis. This technique expands the toolkit available to PDF analysis and adjacent particle phenomenology while pointing to promising generalizations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)007.pdf","citationCount":"0","resultStr":"{\"title\":\"Explainable AI classification for parton density theory\",\"authors\":\"Brandon Kriesten,&nbsp;Jonathan Gomprecht,&nbsp;T. J. Hobbs\",\"doi\":\"10.1007/JHEP11(2024)007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantitatively connecting properties of parton distribution functions (PDFs, or parton densities) to the theoretical assumptions made within the QCD analyses which produce them has been a longstanding problem in HEP phenomenology. To confront this challenge, we introduce an ML-based explainability framework, XAI4PDF, to classify PDFs by parton flavor or underlying theoretical model using ResNet-like neural networks (NNs). By leveraging the differentiable nature of ResNet models, this approach deploys guided backpropagation to dissect relevant features of fitted PDFs, identifying <i>x</i>-dependent signatures of PDFs important to the ML model classifications. By applying our framework, we are able to sort PDFs according to the analysis which produced them while constructing quantitative, human-readable maps locating the <i>x</i> regions most affected by the internal theory assumptions going into each analysis. This technique expands the toolkit available to PDF analysis and adjacent particle phenomenology while pointing to promising generalizations.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 11\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)007.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP11(2024)007\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)007","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

将粒子分布函数(PDF,或粒子密度)的性质与产生这些性质的 QCD 分析中的理论假设定量地联系起来,一直是 HEP 现象学中一个长期存在的问题。为了应对这一挑战,我们引入了一个基于 ML 的可解释性框架 XAI4PDF,利用类似 ResNet 的神经网络(NNs),按照粒子味道或基础理论模型对 PDF 进行分类。通过利用 ResNet 模型的可微分性,这种方法部署了引导反向传播来剖析拟合 PDF 的相关特征,从而识别对 ML 模型分类非常重要的 PDF x 依赖性特征。通过应用我们的框架,我们能够根据产生 PDF 的分析对 PDF 进行分类,同时构建定量的、人类可读的地图,定位受每个分析的内部理论假设影响最大的 x 区域。这项技术扩展了用于 PDF 分析和邻近粒子现象学的工具包,同时指出了前景广阔的一般化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explainable AI classification for parton density theory

Quantitatively connecting properties of parton distribution functions (PDFs, or parton densities) to the theoretical assumptions made within the QCD analyses which produce them has been a longstanding problem in HEP phenomenology. To confront this challenge, we introduce an ML-based explainability framework, XAI4PDF, to classify PDFs by parton flavor or underlying theoretical model using ResNet-like neural networks (NNs). By leveraging the differentiable nature of ResNet models, this approach deploys guided backpropagation to dissect relevant features of fitted PDFs, identifying x-dependent signatures of PDFs important to the ML model classifications. By applying our framework, we are able to sort PDFs according to the analysis which produced them while constructing quantitative, human-readable maps locating the x regions most affected by the internal theory assumptions going into each analysis. This technique expands the toolkit available to PDF analysis and adjacent particle phenomenology while pointing to promising generalizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
Euclidean wormholes in holographic RG flows Addendum to: Combined analysis of neutrino decoherence at reactor experiments Toward double copy on arbitrary backgrounds Revisiting the minimal Nelson-Barr model Interpretations of the ATLAS measurements of Higgs boson production and decay rates and differential cross-sections in pp collisions at \( \sqrt{s} \) = 13 TeV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1