用于高效水电催化的晶体-非晶态 NiO/NiWO4-rGO 核壳复合电催化剂

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2024-11-06 DOI:10.1007/s42114-024-00958-8
Dhanaji B. Malavekar, Shivam Kansara, Mayur A. Gaikwad, Komal D. Patil, Suyoung Jang, Sang Woo Park, Hyojung Bae, Jang-Yeon Hwang, Jin Hyeok Kim
{"title":"用于高效水电催化的晶体-非晶态 NiO/NiWO4-rGO 核壳复合电催化剂","authors":"Dhanaji B. Malavekar,&nbsp;Shivam Kansara,&nbsp;Mayur A. Gaikwad,&nbsp;Komal D. Patil,&nbsp;Suyoung Jang,&nbsp;Sang Woo Park,&nbsp;Hyojung Bae,&nbsp;Jang-Yeon Hwang,&nbsp;Jin Hyeok Kim","doi":"10.1007/s42114-024-00958-8","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel-based materials exhibit excellent electrochemical water splitting activity; however, their inferior mass transport limits further improvement in catalytic performance. Herein, we report a composite core–shell material consisting of spherical nanoparticles of NiWO<sub>4</sub> and rGO sheets coated on crystalline NiO for overall water splitting in an alkaline medium. The macropores created from a uniform coating of spherical nanoparticles with rGO sheets impart high porosity and short diffusion passages, facilitating fast electrolyte flow and thereby enhancing mass transport capability. Benefiting from the excellent mass transport due to mesoporosity, NiO/NiWO<sub>4</sub>-rGO required an overpotential of 270 mV to achieve a current density of 50 mA cm<sup>−2</sup> for OER and 54 mV to achieve a current density of -10 mA cm<sup>−2</sup> for HER. A Tafel slope of 82 and 58 mV dec<sup>−1</sup> for OER and HER was observed for NiO/NiWO<sub>4</sub>-rGO, respectively. Overall water splitting devices fabricated using NiO/NiWO<sub>4</sub>-rGO as an anode and cathode require a cell voltage of 1.59 V to enable a current density of 50 mA cm<sup>−2</sup> with stability for over 50 h indicating a favorable morphological modulation at the interface of NiWO<sub>4</sub>-rGO shell structure coated on a crystalline NiO core, which lowers the overpotential requirement. The assembled water-splitting device performs water splitting 10 M KOH and requires only 1.55 V to reach the current density of 50 mA cm<sup>−2</sup>. Our density functional theory (DFT) calculations reveal the free energy profiles of hydrogen adsorption, guiding the experimental optimization of catalysts for efficient HER and OER. Furthermore, a seawater electrocatalysis device assembled using NiO/NiWO<sub>4</sub>-rGO required only 1.77 V to reach 50 mA cm<sup>−2</sup> current density with stability over 50 h. This confirms that NiO/NiWO<sub>4</sub>-rGO is a potential material for industrial and practical water splitting.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite shell empowered crystalline-amorphous NiO/NiWO4-rGO core-shell electrocatalyst for efficient water electrocatalysis\",\"authors\":\"Dhanaji B. Malavekar,&nbsp;Shivam Kansara,&nbsp;Mayur A. Gaikwad,&nbsp;Komal D. Patil,&nbsp;Suyoung Jang,&nbsp;Sang Woo Park,&nbsp;Hyojung Bae,&nbsp;Jang-Yeon Hwang,&nbsp;Jin Hyeok Kim\",\"doi\":\"10.1007/s42114-024-00958-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nickel-based materials exhibit excellent electrochemical water splitting activity; however, their inferior mass transport limits further improvement in catalytic performance. Herein, we report a composite core–shell material consisting of spherical nanoparticles of NiWO<sub>4</sub> and rGO sheets coated on crystalline NiO for overall water splitting in an alkaline medium. The macropores created from a uniform coating of spherical nanoparticles with rGO sheets impart high porosity and short diffusion passages, facilitating fast electrolyte flow and thereby enhancing mass transport capability. Benefiting from the excellent mass transport due to mesoporosity, NiO/NiWO<sub>4</sub>-rGO required an overpotential of 270 mV to achieve a current density of 50 mA cm<sup>−2</sup> for OER and 54 mV to achieve a current density of -10 mA cm<sup>−2</sup> for HER. A Tafel slope of 82 and 58 mV dec<sup>−1</sup> for OER and HER was observed for NiO/NiWO<sub>4</sub>-rGO, respectively. Overall water splitting devices fabricated using NiO/NiWO<sub>4</sub>-rGO as an anode and cathode require a cell voltage of 1.59 V to enable a current density of 50 mA cm<sup>−2</sup> with stability for over 50 h indicating a favorable morphological modulation at the interface of NiWO<sub>4</sub>-rGO shell structure coated on a crystalline NiO core, which lowers the overpotential requirement. The assembled water-splitting device performs water splitting 10 M KOH and requires only 1.55 V to reach the current density of 50 mA cm<sup>−2</sup>. Our density functional theory (DFT) calculations reveal the free energy profiles of hydrogen adsorption, guiding the experimental optimization of catalysts for efficient HER and OER. Furthermore, a seawater electrocatalysis device assembled using NiO/NiWO<sub>4</sub>-rGO required only 1.77 V to reach 50 mA cm<sup>−2</sup> current density with stability over 50 h. This confirms that NiO/NiWO<sub>4</sub>-rGO is a potential material for industrial and practical water splitting.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00958-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00958-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

镍基材料具有出色的电化学水分离活性,但其质量传输性能较差,限制了催化性能的进一步提高。在此,我们报告了一种复合核壳材料,该材料由球形纳米颗粒 NiWO4 和涂覆在结晶 NiO 上的 rGO 片组成,可用于碱性介质中的整体水分离。球形纳米颗粒与 rGO 片材的均匀涂层所形成的大孔具有高孔隙率和短扩散通道,有利于电解质的快速流动,从而提高了质量传输能力。得益于介孔性带来的出色质量传输能力,NiO/NiWO4-rGO 在 OER 中需要 270 mV 的过电位才能达到 50 mA cm-2 的电流密度,在 HER 中需要 54 mV 的过电位才能达到 -10 mA cm-2 的电流密度。在 NiO/NiWO4-rGO 中,OER 和 HER 的塔菲尔斜率分别为 82 和 58 mV dec-1。使用 NiO/NiWO4-rGO 作为阳极和阴极制造的整体分水装置需要 1.59 V 的电池电压才能使电流密度达到 50 mA cm-2,并能稳定运行 50 小时以上,这表明在结晶 NiO 内核上涂覆的 NiWO4-rGO 外壳结构的界面上存在有利的形态调制,从而降低了过电位要求。组装好的分水装置能进行 10 M KOH 的分水,只需要 1.55 V 就能达到 50 mA cm-2 的电流密度。我们的密度泛函理论(DFT)计算揭示了氢吸附的自由能曲线,为高效 HER 和 OER 催化剂的实验优化提供了指导。此外,使用 NiO/NiWO4-rGO 组装的海水电催化装置仅需 1.77 V 即可达到 50 mA cm-2 的电流密度,且稳定性超过 50 h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Composite shell empowered crystalline-amorphous NiO/NiWO4-rGO core-shell electrocatalyst for efficient water electrocatalysis

Nickel-based materials exhibit excellent electrochemical water splitting activity; however, their inferior mass transport limits further improvement in catalytic performance. Herein, we report a composite core–shell material consisting of spherical nanoparticles of NiWO4 and rGO sheets coated on crystalline NiO for overall water splitting in an alkaline medium. The macropores created from a uniform coating of spherical nanoparticles with rGO sheets impart high porosity and short diffusion passages, facilitating fast electrolyte flow and thereby enhancing mass transport capability. Benefiting from the excellent mass transport due to mesoporosity, NiO/NiWO4-rGO required an overpotential of 270 mV to achieve a current density of 50 mA cm−2 for OER and 54 mV to achieve a current density of -10 mA cm−2 for HER. A Tafel slope of 82 and 58 mV dec−1 for OER and HER was observed for NiO/NiWO4-rGO, respectively. Overall water splitting devices fabricated using NiO/NiWO4-rGO as an anode and cathode require a cell voltage of 1.59 V to enable a current density of 50 mA cm−2 with stability for over 50 h indicating a favorable morphological modulation at the interface of NiWO4-rGO shell structure coated on a crystalline NiO core, which lowers the overpotential requirement. The assembled water-splitting device performs water splitting 10 M KOH and requires only 1.55 V to reach the current density of 50 mA cm−2. Our density functional theory (DFT) calculations reveal the free energy profiles of hydrogen adsorption, guiding the experimental optimization of catalysts for efficient HER and OER. Furthermore, a seawater electrocatalysis device assembled using NiO/NiWO4-rGO required only 1.77 V to reach 50 mA cm−2 current density with stability over 50 h. This confirms that NiO/NiWO4-rGO is a potential material for industrial and practical water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Photocatalytic degradation of Toluene by three-dimensional monolithic Titanium Dioxide / Cuprous Oxide foams with Z-schemed Heterojunction Development and characterization of zein/gum Arabic nanocomposites incorporated edible films for improving strawberry preservation Dynamically interactive nanoparticles in three-dimensional microbeads for enhanced sensitivity, stability, and filtration in colorimetric sensing Efficient charge separation in Z-scheme heterojunctions induced by chemical bonding-enhanced internal electric field for promoting photocatalytic conversion of corn stover to C1/C2 gases Multifunctional PVA/PNIPAM conductive hydrogel sensors enabled human-machine interaction intelligent rehabilitation training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1