利用电阻率预测混凝土力学性能:基于 ANFIS 的软计算方法

Jeena Mathew, Subha Vishnudas
{"title":"利用电阻率预测混凝土力学性能:基于 ANFIS 的软计算方法","authors":"Jeena Mathew,&nbsp;Subha Vishnudas","doi":"10.1007/s42107-024-01164-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the application of electrical resistivity as a non-destructive method for evaluating concrete properties in reinforced structures. It investigates correlations between surface electrical resistivity (ρ) and fundamental mechanical strengths—compressive (fc), splitting tensile (ft), and flexural (fz) across three concrete grades (M20, M30, M40). Using an Adaptive Neuro-Fuzzy Inference System (ANFIS) in MATLAB, experimental data are analysed to minimize root mean square error (RMSE). The study develops regression models incorporating nonlinear and interaction terms to predict compressive, flexural, and tensile strengths, achieving high coefficients of determination (R<sup>2</sup> values of 0.94, 0.98, and 0.98 respectively). Validation against experimental data confirms model accuracy, with errors consistently below 10%. This innovative application of ANFIS and electrical resistivity not only enhances the prediction of concrete strengths but also establishes electrical resistivity as a promising tool for non-destructive assessment, crucial for ensuring the structural integrity of concrete infrastructure.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"6091 - 6104"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of concrete mechanical properties using electrical resistivity: an ANFIS based soft computing approach\",\"authors\":\"Jeena Mathew,&nbsp;Subha Vishnudas\",\"doi\":\"10.1007/s42107-024-01164-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the application of electrical resistivity as a non-destructive method for evaluating concrete properties in reinforced structures. It investigates correlations between surface electrical resistivity (ρ) and fundamental mechanical strengths—compressive (fc), splitting tensile (ft), and flexural (fz) across three concrete grades (M20, M30, M40). Using an Adaptive Neuro-Fuzzy Inference System (ANFIS) in MATLAB, experimental data are analysed to minimize root mean square error (RMSE). The study develops regression models incorporating nonlinear and interaction terms to predict compressive, flexural, and tensile strengths, achieving high coefficients of determination (R<sup>2</sup> values of 0.94, 0.98, and 0.98 respectively). Validation against experimental data confirms model accuracy, with errors consistently below 10%. This innovative application of ANFIS and electrical resistivity not only enhances the prediction of concrete strengths but also establishes electrical resistivity as a promising tool for non-destructive assessment, crucial for ensuring the structural integrity of concrete infrastructure.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"25 8\",\"pages\":\"6091 - 6104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-024-01164-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01164-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了电阻率作为一种非破坏性方法在钢筋结构混凝土性能评估中的应用。它研究了三种等级(M20、M30 和 M40)混凝土的表面电阻率 (ρ)与基本机械强度--抗压强度 (fc)、劈裂拉伸强度 (ft) 和抗折强度 (fz) 之间的相关性。使用 MATLAB 中的自适应神经模糊推理系统 (ANFIS) 分析实验数据,以尽量减少均方根误差 (RMSE)。该研究建立了包含非线性和交互项的回归模型,用于预测抗压、抗弯和抗拉强度,实现了较高的决定系数(R2 值分别为 0.94、0.98 和 0.98)。根据实验数据进行的验证证实了模型的准确性,误差始终低于 10%。ANFIS 和电阻率的这一创新应用不仅增强了对混凝土强度的预测,还使电阻率成为一种有前途的非破坏性评估工具,对确保混凝土基础设施的结构完整性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of concrete mechanical properties using electrical resistivity: an ANFIS based soft computing approach

This study explores the application of electrical resistivity as a non-destructive method for evaluating concrete properties in reinforced structures. It investigates correlations between surface electrical resistivity (ρ) and fundamental mechanical strengths—compressive (fc), splitting tensile (ft), and flexural (fz) across three concrete grades (M20, M30, M40). Using an Adaptive Neuro-Fuzzy Inference System (ANFIS) in MATLAB, experimental data are analysed to minimize root mean square error (RMSE). The study develops regression models incorporating nonlinear and interaction terms to predict compressive, flexural, and tensile strengths, achieving high coefficients of determination (R2 values of 0.94, 0.98, and 0.98 respectively). Validation against experimental data confirms model accuracy, with errors consistently below 10%. This innovative application of ANFIS and electrical resistivity not only enhances the prediction of concrete strengths but also establishes electrical resistivity as a promising tool for non-destructive assessment, crucial for ensuring the structural integrity of concrete infrastructure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
期刊最新文献
A hybrid light GBM and Harris Hawks optimization approach for forecasting construction project performance: enhancing schedule and budget predictions Experimental investigation on mechanical properties of lightweight reactive powder concrete using lightweight expanded clay sand Metaheuristic machine learning for optimizing sustainable interior design: enhancing aesthetic and functional rehabilitation in housing projects Quantifying compressive strength in limestone powder incorporated concrete with incorporating various machine learning algorithms with SHAP analysis A new model for monitoring nonlinear elastic behavior of reinforced concrete structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1