从球到生物打印:三维体外骨肉瘤模型生物制造策略文献综述

IF 3.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Advanced Therapeutics Pub Date : 2024-10-10 DOI:10.1002/adtp.202400047
Margarida F. Domingues, João C. Silva, Paola Sanjuan-Alberte
{"title":"从球到生物打印:三维体外骨肉瘤模型生物制造策略文献综述","authors":"Margarida F. Domingues,&nbsp;João C. Silva,&nbsp;Paola Sanjuan-Alberte","doi":"10.1002/adtp.202400047","DOIUrl":null,"url":null,"abstract":"<p>Osteosarcoma (OS) is a rare primary malignant bone cancer affecting mainly young individuals. Treatment typically consists of chemotherapy and surgical tumor resection, which has undergone few improvements since the 1970s. This therapeutic approach encounters several limitations attributed to the tumor's inherent chemoresistance, marked heterogeneity and metastatic potential. Therefore, the development of in vitro platforms that closely mimic the OS pathophysiology is crucial to understand tumor progression and discover effective anticancer therapeutics. Contrary to 2D monolayer cultures and animal models, 3D in vitro platforms show promise in replicating the 3D tumor macrostructure, cell-cell and cell-extracellular matrix interactions. This review provides an overview of the biomanufacturing strategies employed in developing 3D in vitro OS models, highlighting their role in replicating different aspects of OS and improving OS anticancer research and drug screening. A variety of 3D in vitro models are explored, including both scaffold-free and scaffold-based models, encompassing cell spheroids, hydrogels, and innovative approaches like electrospun nanofibers, microfluidic devices and bioprinted constructs. By examining the distinctive features of each model type, this review offers insights into their potential transformative impact on the landscape of OS research and therapeutic innovation, addressing the challenges and future directions of 3D in vitro OS modeling.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Spheroids to Bioprinting: A Literature Review on Biomanufacturing Strategies of 3D In Vitro Osteosarcoma Models\",\"authors\":\"Margarida F. Domingues,&nbsp;João C. Silva,&nbsp;Paola Sanjuan-Alberte\",\"doi\":\"10.1002/adtp.202400047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Osteosarcoma (OS) is a rare primary malignant bone cancer affecting mainly young individuals. Treatment typically consists of chemotherapy and surgical tumor resection, which has undergone few improvements since the 1970s. This therapeutic approach encounters several limitations attributed to the tumor's inherent chemoresistance, marked heterogeneity and metastatic potential. Therefore, the development of in vitro platforms that closely mimic the OS pathophysiology is crucial to understand tumor progression and discover effective anticancer therapeutics. Contrary to 2D monolayer cultures and animal models, 3D in vitro platforms show promise in replicating the 3D tumor macrostructure, cell-cell and cell-extracellular matrix interactions. This review provides an overview of the biomanufacturing strategies employed in developing 3D in vitro OS models, highlighting their role in replicating different aspects of OS and improving OS anticancer research and drug screening. A variety of 3D in vitro models are explored, including both scaffold-free and scaffold-based models, encompassing cell spheroids, hydrogels, and innovative approaches like electrospun nanofibers, microfluidic devices and bioprinted constructs. By examining the distinctive features of each model type, this review offers insights into their potential transformative impact on the landscape of OS research and therapeutic innovation, addressing the challenges and future directions of 3D in vitro OS modeling.</p>\",\"PeriodicalId\":7284,\"journal\":{\"name\":\"Advanced Therapeutics\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

骨肉瘤(Osteosarcoma,OS)是一种罕见的原发性恶性骨癌,主要影响年轻人。治疗方法通常包括化疗和手术切除肿瘤,但自 20 世纪 70 年代以来,化疗和手术切除肿瘤的方法鲜有改进。由于肿瘤固有的化疗抗药性、明显的异质性和转移潜力,这种治疗方法遇到了一些限制。因此,开发近似操作系统病理生理学的体外平台对于了解肿瘤进展和发现有效的抗癌疗法至关重要。与二维单层培养和动物模型相反,三维体外平台在复制三维肿瘤宏观结构、细胞-细胞和细胞-细胞外基质相互作用方面大有可为。本综述概述了开发三维体外 OS 模型所采用的生物制造策略,强调了它们在复制 OS 不同方面以及改善 OS 抗癌研究和药物筛选方面的作用。本文探讨了各种三维体外模型,包括无支架模型和基于支架的模型,涵盖细胞球、水凝胶以及电纺纳米纤维、微流体装置和生物打印构建物等创新方法。通过研究每种模型类型的显著特点,本综述深入探讨了它们对操作系统研究和治疗创新的潜在变革性影响,探讨了三维体外操作系统建模的挑战和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Spheroids to Bioprinting: A Literature Review on Biomanufacturing Strategies of 3D In Vitro Osteosarcoma Models

Osteosarcoma (OS) is a rare primary malignant bone cancer affecting mainly young individuals. Treatment typically consists of chemotherapy and surgical tumor resection, which has undergone few improvements since the 1970s. This therapeutic approach encounters several limitations attributed to the tumor's inherent chemoresistance, marked heterogeneity and metastatic potential. Therefore, the development of in vitro platforms that closely mimic the OS pathophysiology is crucial to understand tumor progression and discover effective anticancer therapeutics. Contrary to 2D monolayer cultures and animal models, 3D in vitro platforms show promise in replicating the 3D tumor macrostructure, cell-cell and cell-extracellular matrix interactions. This review provides an overview of the biomanufacturing strategies employed in developing 3D in vitro OS models, highlighting their role in replicating different aspects of OS and improving OS anticancer research and drug screening. A variety of 3D in vitro models are explored, including both scaffold-free and scaffold-based models, encompassing cell spheroids, hydrogels, and innovative approaches like electrospun nanofibers, microfluidic devices and bioprinted constructs. By examining the distinctive features of each model type, this review offers insights into their potential transformative impact on the landscape of OS research and therapeutic innovation, addressing the challenges and future directions of 3D in vitro OS modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Therapeutics
Advanced Therapeutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.10
自引率
2.20%
发文量
130
期刊最新文献
Exploiting Spinach-Derived Extracellular Vesicles for Anti-Obesity Therapy Through Lipid Accumulation Inhibition (Adv. Therap. 11/2024) Ex Vivo Modeling of the Tumor Microenvironment to Develop Therapeutic Strategies for Gliomas (Adv. Therap. 11/2024) Issue Information (Adv. Therap. 19/2024) In Vivo Combined Photoacoustic Imaging and Photothermal Treatment of HPV-Negative Head and Neck Carcinoma with NIR-Responsive Non-Persistent Plasmon Nano-Architectures (Adv. Therap. 10/2024) Albumin-Loaded Silica Nanomaterials Functionalized with Organotin(IV) Agents: Theranostic Materials Against Triple-Negative Breast Cancer (Adv. Therap. 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1