Zhenqian Ma, Jinyue Wang, Zhenliang Hao, Jingjie Dai, Xiangyu Zhu, He Zheng, Xiongjun Liu, Hailong Zhang, Zhaoping Lu
{"title":"具有对齐结构和超高导热性的新型石墨烯-环氧树脂复合材料","authors":"Zhenqian Ma, Jinyue Wang, Zhenliang Hao, Jingjie Dai, Xiangyu Zhu, He Zheng, Xiongjun Liu, Hailong Zhang, Zhaoping Lu","doi":"10.1002/adfm.202412534","DOIUrl":null,"url":null,"abstract":"Because of the surge in the power density of electronic devices, there is an urgent need for improvements in the thermal conductivity of packaging materials. Nowadays, epoxy composites supplemented with thermally conductive fillers are widely used for this purpose, but unfortunately, none of them can satisfactorily meet industrial requirements. Herein, this article reports on a novel method to prepare well-shaped and highly ordered graphene-epoxy composite architecture; that is, the epoxy infiltrates into tubular graphene columns that have been restored to the high thermally conductive structure of graphene. As a result, the newly developed graphene-epoxy composite exhibits record-high thermal conductivity of 69.74 W m<sup>−1</sup> K<sup>−1</sup> with filler content of only 11.22 wt.%. The unprecedentedly high thermal conductivity stems from the construction of thermally conductive channels and restoration of the inherent π–π conjugate structure of graphene. These findings not only offer a breakthrough in packaging materials with significantly enhanced thermal conductivity but also provide a promising avenue for the development of other advanced graphene-added composites.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Graphene-Epoxy Composite with Aligned Architecture and Ultrahigh Thermal Conductivity\",\"authors\":\"Zhenqian Ma, Jinyue Wang, Zhenliang Hao, Jingjie Dai, Xiangyu Zhu, He Zheng, Xiongjun Liu, Hailong Zhang, Zhaoping Lu\",\"doi\":\"10.1002/adfm.202412534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the surge in the power density of electronic devices, there is an urgent need for improvements in the thermal conductivity of packaging materials. Nowadays, epoxy composites supplemented with thermally conductive fillers are widely used for this purpose, but unfortunately, none of them can satisfactorily meet industrial requirements. Herein, this article reports on a novel method to prepare well-shaped and highly ordered graphene-epoxy composite architecture; that is, the epoxy infiltrates into tubular graphene columns that have been restored to the high thermally conductive structure of graphene. As a result, the newly developed graphene-epoxy composite exhibits record-high thermal conductivity of 69.74 W m<sup>−1</sup> K<sup>−1</sup> with filler content of only 11.22 wt.%. The unprecedentedly high thermal conductivity stems from the construction of thermally conductive channels and restoration of the inherent π–π conjugate structure of graphene. These findings not only offer a breakthrough in packaging materials with significantly enhanced thermal conductivity but also provide a promising avenue for the development of other advanced graphene-added composites.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202412534\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412534","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
由于电子设备的功率密度急剧增加,因此迫切需要改善包装材料的导热性能。目前,添加导热填料的环氧树脂复合材料已被广泛应用,但遗憾的是,它们都无法满足工业要求。本文报告了一种制备形状良好且高度有序的石墨烯-环氧复合材料结构的新方法,即环氧渗入管状石墨烯柱中,恢复石墨烯的高导热结构。因此,新开发的石墨烯-环氧复合材料的热导率达到了创纪录的 69.74 W m-1 K-1,而填料含量仅为 11.22 wt.%。前所未有的高导热率源于导热通道的构建以及石墨烯固有的 π-π 共轭结构的恢复。这些发现不仅为具有显著增强导热性的包装材料提供了一个突破口,而且为开发其他添加石墨烯的先进复合材料提供了一个前景广阔的途径。
Novel Graphene-Epoxy Composite with Aligned Architecture and Ultrahigh Thermal Conductivity
Because of the surge in the power density of electronic devices, there is an urgent need for improvements in the thermal conductivity of packaging materials. Nowadays, epoxy composites supplemented with thermally conductive fillers are widely used for this purpose, but unfortunately, none of them can satisfactorily meet industrial requirements. Herein, this article reports on a novel method to prepare well-shaped and highly ordered graphene-epoxy composite architecture; that is, the epoxy infiltrates into tubular graphene columns that have been restored to the high thermally conductive structure of graphene. As a result, the newly developed graphene-epoxy composite exhibits record-high thermal conductivity of 69.74 W m−1 K−1 with filler content of only 11.22 wt.%. The unprecedentedly high thermal conductivity stems from the construction of thermally conductive channels and restoration of the inherent π–π conjugate structure of graphene. These findings not only offer a breakthrough in packaging materials with significantly enhanced thermal conductivity but also provide a promising avenue for the development of other advanced graphene-added composites.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.