通过 "锁定-解锁-增强 "ROS 生成策略,miR-21 引导精确光动力疗法

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2024-11-06 DOI:10.1002/adfm.202418016
Mengting Zhu, Tao Liang, Yupei Zhao, Zhen Li
{"title":"通过 \"锁定-解锁-增强 \"ROS 生成策略,miR-21 引导精确光动力疗法","authors":"Mengting Zhu, Tao Liang, Yupei Zhao, Zhen Li","doi":"10.1002/adfm.202418016","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) stands out as a highly promising modality for tumor treatment, yet previous works have primarily centered around either boosting the production of reactive oxygen species (ROS) in tumor tissues or restricting it in normal tissues. The current challenge lies in the urgent need to achieve precise modulation of ROS production by simultaneously controlling both aspects. To achieve this goal, a precise PDT platform through a “locking-unlocking-boosting” ROS production strategy is presented, in which the generation of ROS is modulated by bidirectionally regulating the upconversion luminescence (UCL) of lanthanide-doped nanoparticles (LnNPs), thus ROS production is “locked” in normal tissues but “boosted” in tumor tissues. In detail, by introducing an energy acceptor BHQ3, the UCL is initially quenched to prevent Chlorin e6 (Ce6) from generating ROS. However, under the tumor microenvironment with overexpressed miR-21, LnNPs are sequestered from BHQ3 to “unlock” ROS generation and then assembled with QDs@B2, which functions as an antenna to sensitize LnNPs luminescence, to further “boost” ROS generation. With the assistance of spherical nucleic acids, this therapeutic agent effectively traverses the blood-brain barrier (BBB), enabling efficient PDT for glioblastoma.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"44 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-21-Trigged Precise Photodynamic Therapy Through a “Locking-Unlocking-Boosting” ROS Production Strategy\",\"authors\":\"Mengting Zhu, Tao Liang, Yupei Zhao, Zhen Li\",\"doi\":\"10.1002/adfm.202418016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photodynamic therapy (PDT) stands out as a highly promising modality for tumor treatment, yet previous works have primarily centered around either boosting the production of reactive oxygen species (ROS) in tumor tissues or restricting it in normal tissues. The current challenge lies in the urgent need to achieve precise modulation of ROS production by simultaneously controlling both aspects. To achieve this goal, a precise PDT platform through a “locking-unlocking-boosting” ROS production strategy is presented, in which the generation of ROS is modulated by bidirectionally regulating the upconversion luminescence (UCL) of lanthanide-doped nanoparticles (LnNPs), thus ROS production is “locked” in normal tissues but “boosted” in tumor tissues. In detail, by introducing an energy acceptor BHQ3, the UCL is initially quenched to prevent Chlorin e6 (Ce6) from generating ROS. However, under the tumor microenvironment with overexpressed miR-21, LnNPs are sequestered from BHQ3 to “unlock” ROS generation and then assembled with QDs@B2, which functions as an antenna to sensitize LnNPs luminescence, to further “boost” ROS generation. With the assistance of spherical nucleic acids, this therapeutic agent effectively traverses the blood-brain barrier (BBB), enabling efficient PDT for glioblastoma.\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202418016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

光动力疗法(PDT)是一种极具前景的肿瘤治疗方法,但以往的研究主要集中在促进肿瘤组织中活性氧(ROS)的产生或限制正常组织中活性氧的产生。目前的挑战在于迫切需要通过同时控制这两个方面来实现对 ROS 生成的精确调节。为实现这一目标,本文提出了一种通过 "锁定-解锁-增强 "ROS产生策略的精确光导治疗平台,即通过双向调节掺镧纳米粒子(LnNPs)的上转换发光(UCL)来调控ROS的产生,从而在正常组织中 "锁定 "ROS的产生,而在肿瘤组织中 "增强 "ROS的产生。具体来说,通过引入能量接受体 BHQ3,UCL 最初会被淬灭,以防止 Chlorin e6(Ce6)产生 ROS。然而,在miR-21过度表达的肿瘤微环境下,LnNPs被BHQ3螯合以 "释放 "ROS的产生,然后与作为天线的QDs@B2组装在一起,使LnNPs发光,从而进一步 "促进 "ROS的产生。在球形核酸的辅助下,这种治疗剂可有效穿越血脑屏障(BBB),从而实现对胶质母细胞瘤的高效局部光疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-21-Trigged Precise Photodynamic Therapy Through a “Locking-Unlocking-Boosting” ROS Production Strategy
Photodynamic therapy (PDT) stands out as a highly promising modality for tumor treatment, yet previous works have primarily centered around either boosting the production of reactive oxygen species (ROS) in tumor tissues or restricting it in normal tissues. The current challenge lies in the urgent need to achieve precise modulation of ROS production by simultaneously controlling both aspects. To achieve this goal, a precise PDT platform through a “locking-unlocking-boosting” ROS production strategy is presented, in which the generation of ROS is modulated by bidirectionally regulating the upconversion luminescence (UCL) of lanthanide-doped nanoparticles (LnNPs), thus ROS production is “locked” in normal tissues but “boosted” in tumor tissues. In detail, by introducing an energy acceptor BHQ3, the UCL is initially quenched to prevent Chlorin e6 (Ce6) from generating ROS. However, under the tumor microenvironment with overexpressed miR-21, LnNPs are sequestered from BHQ3 to “unlock” ROS generation and then assembled with QDs@B2, which functions as an antenna to sensitize LnNPs luminescence, to further “boost” ROS generation. With the assistance of spherical nucleic acids, this therapeutic agent effectively traverses the blood-brain barrier (BBB), enabling efficient PDT for glioblastoma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Highly Alternating Copolymer of [1.1.1]Propellane and Perfluoro Vinyl Ether: Forming a Hydrophobic and Oleophobic Surface with <50% Fluorine Monomer Content. Semiaromatic Polyester-Ethers with Tunable Degradation Profiles. Eutectic Strategy for the Solvent-Free Synthesis of Hydrophobic Cellulosic Cross-Linked Networks with Broad Multifunctional Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1