{"title":"热活化对月球岩石模拟基前驱体和由此产生的土工聚合物的影响:成分、结构、溶解性和反应性","authors":"Guangjie Xue, Guofu Qiao","doi":"10.1016/j.cemconcomp.2024.105840","DOIUrl":null,"url":null,"abstract":"<div><div>Alkali activation presents a promising method for the <em>in situ</em> resource utilization (ISRU) of lunar regolith. Enhancing the geopolymerization reactivity of lunar regolith simulant is key in minimizing alkali activator usage and improving raw material utilization. This study investigates the impact of thermal activation on precursor materials and the resultant geopolymers. Initially, the mineralogical composition and chemical structural changes in thermally activated samples were analyzed using XRD-Rietveld, XPS, and Raman spectroscopy. Subsequently, ICP-OES was employed to measure the solubility of various thermally activated samples in NaOH solution. Finally, the physicochemical composition and microstructure of the geopolymers were evaluated using SEM-EDS, FTIR, DSC, and compressive strength tests. The results show that thermal activation enhances precursor reactivity by increasing the non-bridging oxygen (NBO) content, reducing polymerization, and altering the binding energies of Si, Al, and O. Following thermal activation, the solubility of Si and Al in the NaOH solution was significantly improved. A more comprehensive thermal activation process produces geopolymers with improved compressive strength, a higher reaction degree, and a denser microstructure, and encourages the formation of Si-rich gels. Hence, treating precursor materials via thermal activation offers vast potential for creating lunar regolith geopolymer-based building materials with excellent properties.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"155 ","pages":"Article 105840"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of thermal activation on lunar regolith simulant-based precursor and resulting geopolymer: Composition, structure, solubility, and reactivity\",\"authors\":\"Guangjie Xue, Guofu Qiao\",\"doi\":\"10.1016/j.cemconcomp.2024.105840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alkali activation presents a promising method for the <em>in situ</em> resource utilization (ISRU) of lunar regolith. Enhancing the geopolymerization reactivity of lunar regolith simulant is key in minimizing alkali activator usage and improving raw material utilization. This study investigates the impact of thermal activation on precursor materials and the resultant geopolymers. Initially, the mineralogical composition and chemical structural changes in thermally activated samples were analyzed using XRD-Rietveld, XPS, and Raman spectroscopy. Subsequently, ICP-OES was employed to measure the solubility of various thermally activated samples in NaOH solution. Finally, the physicochemical composition and microstructure of the geopolymers were evaluated using SEM-EDS, FTIR, DSC, and compressive strength tests. The results show that thermal activation enhances precursor reactivity by increasing the non-bridging oxygen (NBO) content, reducing polymerization, and altering the binding energies of Si, Al, and O. Following thermal activation, the solubility of Si and Al in the NaOH solution was significantly improved. A more comprehensive thermal activation process produces geopolymers with improved compressive strength, a higher reaction degree, and a denser microstructure, and encourages the formation of Si-rich gels. Hence, treating precursor materials via thermal activation offers vast potential for creating lunar regolith geopolymer-based building materials with excellent properties.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"155 \",\"pages\":\"Article 105840\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095894652400413X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652400413X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Impacts of thermal activation on lunar regolith simulant-based precursor and resulting geopolymer: Composition, structure, solubility, and reactivity
Alkali activation presents a promising method for the in situ resource utilization (ISRU) of lunar regolith. Enhancing the geopolymerization reactivity of lunar regolith simulant is key in minimizing alkali activator usage and improving raw material utilization. This study investigates the impact of thermal activation on precursor materials and the resultant geopolymers. Initially, the mineralogical composition and chemical structural changes in thermally activated samples were analyzed using XRD-Rietveld, XPS, and Raman spectroscopy. Subsequently, ICP-OES was employed to measure the solubility of various thermally activated samples in NaOH solution. Finally, the physicochemical composition and microstructure of the geopolymers were evaluated using SEM-EDS, FTIR, DSC, and compressive strength tests. The results show that thermal activation enhances precursor reactivity by increasing the non-bridging oxygen (NBO) content, reducing polymerization, and altering the binding energies of Si, Al, and O. Following thermal activation, the solubility of Si and Al in the NaOH solution was significantly improved. A more comprehensive thermal activation process produces geopolymers with improved compressive strength, a higher reaction degree, and a denser microstructure, and encourages the formation of Si-rich gels. Hence, treating precursor materials via thermal activation offers vast potential for creating lunar regolith geopolymer-based building materials with excellent properties.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.