{"title":"通过多组学技术研究环境内分泌干扰化学物质--DEHP暴露引起的哺乳小鼠微生物群-肠道-乳腺轴的生物毒性","authors":"Xiaolong Xu, Yonglong He, Zefang Cheng, Haoyuan Zhang, Yijian Chu, Zhewei Wang, Xiaopeng An","doi":"10.1016/j.envint.2024.109130","DOIUrl":null,"url":null,"abstract":"<div><div>Plastics, pervasive in humans and nature, often contain Di (2-ethylhexyl) phthalate (DEHP) that enhance plastic’s elasticity. However, DEHP is an environmental endocrine disruptor, affecting organisms upon exposure. Understanding mammary gland development in lactating females is crucial for offspring nourishment and dairy production. Employing multi-omics technology, this study aimed to uncover DEHP’s impact on the microbial–gut–mammary axis. Forty mice were exposed to varying DEHP doses for 18 d. We performed 16S sequencing, metabolomics, mammary tissue observation, and gene expression profiling. Results revealed DEHP’s influence on microbial diversity, with increased <em>Lactobacillus</em> abundance and reduced <em>Proteobacteria</em>, alongside colonic inflammation. Elevated GMP and adenosine 5′-monophosphate levels in the bloodstream were noted, while ascorbic acid, glycitein, and others decreased. MEHP, a DEHP metabolite, damaged mammary tissues, inhibiting ERK1/2 phosphorylation, triggering apoptosis and ferroptosis. These findings unveil potential therapeutic targets for DEHP-induced chronic toxicity in humans and animals, aiding dairy livestock health and human well-being. This study underscores the importance of understanding the adverse effects of DEHP exposure on mammalian systems.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"193 ","pages":"Article 109130"},"PeriodicalIF":10.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental endocrine disrupting chemical-DEHP exposure-provoked biotoxicity about microbiota-gut-mammary axis in lactating mice via multi-omics technologies\",\"authors\":\"Xiaolong Xu, Yonglong He, Zefang Cheng, Haoyuan Zhang, Yijian Chu, Zhewei Wang, Xiaopeng An\",\"doi\":\"10.1016/j.envint.2024.109130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plastics, pervasive in humans and nature, often contain Di (2-ethylhexyl) phthalate (DEHP) that enhance plastic’s elasticity. However, DEHP is an environmental endocrine disruptor, affecting organisms upon exposure. Understanding mammary gland development in lactating females is crucial for offspring nourishment and dairy production. Employing multi-omics technology, this study aimed to uncover DEHP’s impact on the microbial–gut–mammary axis. Forty mice were exposed to varying DEHP doses for 18 d. We performed 16S sequencing, metabolomics, mammary tissue observation, and gene expression profiling. Results revealed DEHP’s influence on microbial diversity, with increased <em>Lactobacillus</em> abundance and reduced <em>Proteobacteria</em>, alongside colonic inflammation. Elevated GMP and adenosine 5′-monophosphate levels in the bloodstream were noted, while ascorbic acid, glycitein, and others decreased. MEHP, a DEHP metabolite, damaged mammary tissues, inhibiting ERK1/2 phosphorylation, triggering apoptosis and ferroptosis. These findings unveil potential therapeutic targets for DEHP-induced chronic toxicity in humans and animals, aiding dairy livestock health and human well-being. This study underscores the importance of understanding the adverse effects of DEHP exposure on mammalian systems.</div></div>\",\"PeriodicalId\":308,\"journal\":{\"name\":\"Environment International\",\"volume\":\"193 \",\"pages\":\"Article 109130\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160412024007165\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412024007165","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Environmental endocrine disrupting chemical-DEHP exposure-provoked biotoxicity about microbiota-gut-mammary axis in lactating mice via multi-omics technologies
Plastics, pervasive in humans and nature, often contain Di (2-ethylhexyl) phthalate (DEHP) that enhance plastic’s elasticity. However, DEHP is an environmental endocrine disruptor, affecting organisms upon exposure. Understanding mammary gland development in lactating females is crucial for offspring nourishment and dairy production. Employing multi-omics technology, this study aimed to uncover DEHP’s impact on the microbial–gut–mammary axis. Forty mice were exposed to varying DEHP doses for 18 d. We performed 16S sequencing, metabolomics, mammary tissue observation, and gene expression profiling. Results revealed DEHP’s influence on microbial diversity, with increased Lactobacillus abundance and reduced Proteobacteria, alongside colonic inflammation. Elevated GMP and adenosine 5′-monophosphate levels in the bloodstream were noted, while ascorbic acid, glycitein, and others decreased. MEHP, a DEHP metabolite, damaged mammary tissues, inhibiting ERK1/2 phosphorylation, triggering apoptosis and ferroptosis. These findings unveil potential therapeutic targets for DEHP-induced chronic toxicity in humans and animals, aiding dairy livestock health and human well-being. This study underscores the importance of understanding the adverse effects of DEHP exposure on mammalian systems.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.