Yueran Ren , Bingqian Zhou , Minghui Yu , Yangyang Xue , Weijun Kong , Rui Yang
{"title":"基于具有双催化位点的磁性纳米粒子 CuFe2O4@ABEI-GNPs 的无标记差异化学发光免疫传感器","authors":"Yueran Ren , Bingqian Zhou , Minghui Yu , Yangyang Xue , Weijun Kong , Rui Yang","doi":"10.1016/j.aca.2024.343397","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cancer has become one of the main causes of death globally. The level of tumor markers in serum is correlated with the occurrence of cancer. Carcinoembryonic antigen (CEA) is the most commonly utilized tumor marker for cancer detection. Recently, various analytical technologies have been reported to detect biomarkers. However, developing a simple, sensitive, and noninvasive approach for CEA detection remains challenging in cancer diagnosis. Consequently, there is an urgent need for researchers to carry out innovative approaches for CEA detection.</div></div><div><h3>Result</h3><div>In this work, copper ferrite nanoparticles (CuFe<sub>2</sub>O<sub>4</sub> NPs) with excellent dispersity and fascinating magnetism have been successfully synthesized. To get CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs, ABEI-gold NPs (ABEI-GNPs) were generated on the surface of CuFe<sub>2</sub>O<sub>4</sub> NPs by using N-(4-Aminobutyl)-N-ethylisoluminol (ABEI) as a mild reduction reagent to reduce chloroauric acid tetrahydrate (HAuCl<sub>4</sub>·4H<sub>2</sub>O). The CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs exhibited a superior chemiluminescence (CL) performance compared with CuFe<sub>2</sub>O<sub>4</sub>@ABEI NPs, which was attributed to the synergistic catalysis effects of CuFe<sub>2</sub>O<sub>4</sub> NPs and GNPs. Interestingly, two unique CL emission peaks were observed in the kinetic curve of CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs. Furthermore, it was found that the kinetic curve could be regulated by the pH of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and a possible CL mechanism was proposed. Owing to the favorable CL properties of CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs, a label-free differential immunosensor was fabricated for CEA monitoring using the intensity difference between CL-1 and CL-2. The developed immunosensor exhibited a wide linear range from 0.1 to 5000 pg/mL, and a low detection limit of 0.05 pg/mL.</div></div><div><h3>Significance and novelty</h3><div>The immunosensor was capable of determining CEA in real samples with simple operation, high accuracy, and good sensitivity. This study introduces a novel approach for developing CL functionalized materials, which have broad application potential in bioassays. The proposed differential method could serve as a novel tool for determining CEA in the diagnosis of clinical cancer.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343397"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-free differential chemiluminescent immunosensor based on magnetic nanoparticles CuFe2O4@ABEI-GNPs with dual catalytic sites\",\"authors\":\"Yueran Ren , Bingqian Zhou , Minghui Yu , Yangyang Xue , Weijun Kong , Rui Yang\",\"doi\":\"10.1016/j.aca.2024.343397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Cancer has become one of the main causes of death globally. The level of tumor markers in serum is correlated with the occurrence of cancer. Carcinoembryonic antigen (CEA) is the most commonly utilized tumor marker for cancer detection. Recently, various analytical technologies have been reported to detect biomarkers. However, developing a simple, sensitive, and noninvasive approach for CEA detection remains challenging in cancer diagnosis. Consequently, there is an urgent need for researchers to carry out innovative approaches for CEA detection.</div></div><div><h3>Result</h3><div>In this work, copper ferrite nanoparticles (CuFe<sub>2</sub>O<sub>4</sub> NPs) with excellent dispersity and fascinating magnetism have been successfully synthesized. To get CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs, ABEI-gold NPs (ABEI-GNPs) were generated on the surface of CuFe<sub>2</sub>O<sub>4</sub> NPs by using N-(4-Aminobutyl)-N-ethylisoluminol (ABEI) as a mild reduction reagent to reduce chloroauric acid tetrahydrate (HAuCl<sub>4</sub>·4H<sub>2</sub>O). The CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs exhibited a superior chemiluminescence (CL) performance compared with CuFe<sub>2</sub>O<sub>4</sub>@ABEI NPs, which was attributed to the synergistic catalysis effects of CuFe<sub>2</sub>O<sub>4</sub> NPs and GNPs. Interestingly, two unique CL emission peaks were observed in the kinetic curve of CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs. Furthermore, it was found that the kinetic curve could be regulated by the pH of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and a possible CL mechanism was proposed. Owing to the favorable CL properties of CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs, a label-free differential immunosensor was fabricated for CEA monitoring using the intensity difference between CL-1 and CL-2. The developed immunosensor exhibited a wide linear range from 0.1 to 5000 pg/mL, and a low detection limit of 0.05 pg/mL.</div></div><div><h3>Significance and novelty</h3><div>The immunosensor was capable of determining CEA in real samples with simple operation, high accuracy, and good sensitivity. This study introduces a novel approach for developing CL functionalized materials, which have broad application potential in bioassays. The proposed differential method could serve as a novel tool for determining CEA in the diagnosis of clinical cancer.</div></div>\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":\"1333 \",\"pages\":\"Article 343397\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000326702401198X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000326702401198X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Label-free differential chemiluminescent immunosensor based on magnetic nanoparticles CuFe2O4@ABEI-GNPs with dual catalytic sites
Background
Cancer has become one of the main causes of death globally. The level of tumor markers in serum is correlated with the occurrence of cancer. Carcinoembryonic antigen (CEA) is the most commonly utilized tumor marker for cancer detection. Recently, various analytical technologies have been reported to detect biomarkers. However, developing a simple, sensitive, and noninvasive approach for CEA detection remains challenging in cancer diagnosis. Consequently, there is an urgent need for researchers to carry out innovative approaches for CEA detection.
Result
In this work, copper ferrite nanoparticles (CuFe2O4 NPs) with excellent dispersity and fascinating magnetism have been successfully synthesized. To get CuFe2O4@ABEI-GNPs, ABEI-gold NPs (ABEI-GNPs) were generated on the surface of CuFe2O4 NPs by using N-(4-Aminobutyl)-N-ethylisoluminol (ABEI) as a mild reduction reagent to reduce chloroauric acid tetrahydrate (HAuCl4·4H2O). The CuFe2O4@ABEI-GNPs exhibited a superior chemiluminescence (CL) performance compared with CuFe2O4@ABEI NPs, which was attributed to the synergistic catalysis effects of CuFe2O4 NPs and GNPs. Interestingly, two unique CL emission peaks were observed in the kinetic curve of CuFe2O4@ABEI-GNPs. Furthermore, it was found that the kinetic curve could be regulated by the pH of hydrogen peroxide (H2O2) and a possible CL mechanism was proposed. Owing to the favorable CL properties of CuFe2O4@ABEI-GNPs, a label-free differential immunosensor was fabricated for CEA monitoring using the intensity difference between CL-1 and CL-2. The developed immunosensor exhibited a wide linear range from 0.1 to 5000 pg/mL, and a low detection limit of 0.05 pg/mL.
Significance and novelty
The immunosensor was capable of determining CEA in real samples with simple operation, high accuracy, and good sensitivity. This study introduces a novel approach for developing CL functionalized materials, which have broad application potential in bioassays. The proposed differential method could serve as a novel tool for determining CEA in the diagnosis of clinical cancer.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.