高维自旋轨道单光子源

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-06 DOI:10.1126/sciadv.adq6298
Yinhui Kan, Xujing Liu, Shailesh Kumar, Liudmilla F. Kulikova, Valery A. Davydov, Viatcheslav N. Agafonov, Sergey I. Bozhevolnyi
{"title":"高维自旋轨道单光子源","authors":"Yinhui Kan,&nbsp;Xujing Liu,&nbsp;Shailesh Kumar,&nbsp;Liudmilla F. Kulikova,&nbsp;Valery A. Davydov,&nbsp;Viatcheslav N. Agafonov,&nbsp;Sergey I. Bozhevolnyi","doi":"10.1126/sciadv.adq6298","DOIUrl":null,"url":null,"abstract":"<div >Hybrid integration of solid-state quantum emitters (QEs) into nanophotonic structures opens enticing perspectives for exploiting multiple degrees of freedom of single-photon sources for on-chip quantum photonic applications. However, the state-of-the-art single-photon sources are mostly limited to two-level states or scalar vortex beams. Direct generation of high-dimensional structured single photons remains challenging, being still in its infancy. Here, we propose a general strategy to design highly entangled high-dimensional spin-orbital single-photon sources by taking full advantage of the spatial freedom to design QE-coupled composite (i.e., Moiré/multipart) metasurfaces. We demonstrate the generation of arbitrary vectorial spin-orbital photon emission in high-dimensional Hilbert spaces, mapping the generated states on hybrid-order Bloch spheres. We further realize single-photon sources of high-dimensional spin-orbital quantum emission and experimentally verify the entanglement of high-dimensional superposition states with high fidelity. We believe that the results obtained facilitate further progress in integrated solutions for the deployment of next-generation high-capacity quantum information technologies.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq6298","citationCount":"0","resultStr":"{\"title\":\"High-dimensional spin-orbital single-photon sources\",\"authors\":\"Yinhui Kan,&nbsp;Xujing Liu,&nbsp;Shailesh Kumar,&nbsp;Liudmilla F. Kulikova,&nbsp;Valery A. Davydov,&nbsp;Viatcheslav N. Agafonov,&nbsp;Sergey I. Bozhevolnyi\",\"doi\":\"10.1126/sciadv.adq6298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Hybrid integration of solid-state quantum emitters (QEs) into nanophotonic structures opens enticing perspectives for exploiting multiple degrees of freedom of single-photon sources for on-chip quantum photonic applications. However, the state-of-the-art single-photon sources are mostly limited to two-level states or scalar vortex beams. Direct generation of high-dimensional structured single photons remains challenging, being still in its infancy. Here, we propose a general strategy to design highly entangled high-dimensional spin-orbital single-photon sources by taking full advantage of the spatial freedom to design QE-coupled composite (i.e., Moiré/multipart) metasurfaces. We demonstrate the generation of arbitrary vectorial spin-orbital photon emission in high-dimensional Hilbert spaces, mapping the generated states on hybrid-order Bloch spheres. We further realize single-photon sources of high-dimensional spin-orbital quantum emission and experimentally verify the entanglement of high-dimensional superposition states with high fidelity. We believe that the results obtained facilitate further progress in integrated solutions for the deployment of next-generation high-capacity quantum information technologies.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adq6298\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq6298\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq6298","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将固态量子发射器(QE)混合集成到纳米光子结构中,为利用单光子源的多自由度实现片上量子光子应用开辟了诱人的前景。然而,最先进的单光子源大多局限于两级态或标量涡束。直接产生高维结构单光子仍具有挑战性,目前仍处于起步阶段。在这里,我们提出了一种设计高度纠缠的高维自旋轨道单光子源的通用策略,即充分利用空间自由度来设计 QE 耦合复合(即 Moiré/多部分)元面。我们演示了在高维希尔伯特空间中生成任意矢量自旋轨道光子发射,并将生成的状态映射到混合阶布洛赫球上。我们进一步实现了高维自旋轨道量子发射的单光子源,并通过实验高保真地验证了高维叠加态的纠缠。我们相信,所取得的成果将推动下一代大容量量子信息技术部署的集成解决方案取得进一步进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-dimensional spin-orbital single-photon sources
Hybrid integration of solid-state quantum emitters (QEs) into nanophotonic structures opens enticing perspectives for exploiting multiple degrees of freedom of single-photon sources for on-chip quantum photonic applications. However, the state-of-the-art single-photon sources are mostly limited to two-level states or scalar vortex beams. Direct generation of high-dimensional structured single photons remains challenging, being still in its infancy. Here, we propose a general strategy to design highly entangled high-dimensional spin-orbital single-photon sources by taking full advantage of the spatial freedom to design QE-coupled composite (i.e., Moiré/multipart) metasurfaces. We demonstrate the generation of arbitrary vectorial spin-orbital photon emission in high-dimensional Hilbert spaces, mapping the generated states on hybrid-order Bloch spheres. We further realize single-photon sources of high-dimensional spin-orbital quantum emission and experimentally verify the entanglement of high-dimensional superposition states with high fidelity. We believe that the results obtained facilitate further progress in integrated solutions for the deployment of next-generation high-capacity quantum information technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission Dynamical control of nanoscale electron density in atomically thin n-type semiconductors via nano-electric pulse generator Gas-phase preparation of silylacetylene (SiH3CCH) through a counterintuitive ethynyl radical (C2H) insertion Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1