Joaquin E. Urrutia Gómez, Meijun Zhou, Nikolaj K. Mandsberg, Julian A. Serna, Julius von Padberg, Sida Liu, Markus Reischl, Pavel A. Levkin, Anna A. Popova
{"title":"在液滴微阵列上实现高并行、高通量纳升级液体、细胞和球状物操作","authors":"Joaquin E. Urrutia Gómez, Meijun Zhou, Nikolaj K. Mandsberg, Julian A. Serna, Julius von Padberg, Sida Liu, Markus Reischl, Pavel A. Levkin, Anna A. Popova","doi":"10.1002/adfm.202410355","DOIUrl":null,"url":null,"abstract":"The droplet microarray (DMA) platform is a powerful tool for high-throughput biological and chemical applications, enabling miniaturization and parallelization of experimental processes. Capable of holding hundreds of nanoliter droplets, it facilitates the screening and analysis of samples, such as cells, bacteria, embryos, and spheroids. Handling thousands of small volumes in parallel presents significant challenges. In this study, we utilize the open format of the DMA for controlled, parallel high-throughput liquid manipulations using the sandwich technique. We demonstrate high-throughput medium replacement at nanoliter-scale, maintaining high cell viability on DMA for up to 7 days; for HeLa-CLL2 cells (adherent) and SU-DHL4 cells (suspension), and up to 14 days for HEK293 spheroids. Additionally, we achieve highly parallel aliquot uptake from nanoliter droplets, enabling non-destructive cell viability assessments. Furthermore, the presented method enables the parallel transfer of cell spheroids between different DMAs, allowing transfer and pooling of spheroids in seconds without damage. These advances significantly enhance the capabilities of the DMA platform, enabling long-term cell culture in nanoliter droplets and parallel sampling for high-throughput cell or spheroid manipulation. This broadens the scope of DMA's potential applications in fields such as cell-based high-throughput screening, formation of complex 3D cell models for drug screening, and microtissue engineering.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"28 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Parallel and High-Throughput Nanoliter-Scale Liquid, Cell, and Spheroid Manipulation on Droplet Microarray\",\"authors\":\"Joaquin E. Urrutia Gómez, Meijun Zhou, Nikolaj K. Mandsberg, Julian A. Serna, Julius von Padberg, Sida Liu, Markus Reischl, Pavel A. Levkin, Anna A. Popova\",\"doi\":\"10.1002/adfm.202410355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The droplet microarray (DMA) platform is a powerful tool for high-throughput biological and chemical applications, enabling miniaturization and parallelization of experimental processes. Capable of holding hundreds of nanoliter droplets, it facilitates the screening and analysis of samples, such as cells, bacteria, embryos, and spheroids. Handling thousands of small volumes in parallel presents significant challenges. In this study, we utilize the open format of the DMA for controlled, parallel high-throughput liquid manipulations using the sandwich technique. We demonstrate high-throughput medium replacement at nanoliter-scale, maintaining high cell viability on DMA for up to 7 days; for HeLa-CLL2 cells (adherent) and SU-DHL4 cells (suspension), and up to 14 days for HEK293 spheroids. Additionally, we achieve highly parallel aliquot uptake from nanoliter droplets, enabling non-destructive cell viability assessments. Furthermore, the presented method enables the parallel transfer of cell spheroids between different DMAs, allowing transfer and pooling of spheroids in seconds without damage. These advances significantly enhance the capabilities of the DMA platform, enabling long-term cell culture in nanoliter droplets and parallel sampling for high-throughput cell or spheroid manipulation. This broadens the scope of DMA's potential applications in fields such as cell-based high-throughput screening, formation of complex 3D cell models for drug screening, and microtissue engineering.\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202410355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Highly Parallel and High-Throughput Nanoliter-Scale Liquid, Cell, and Spheroid Manipulation on Droplet Microarray
The droplet microarray (DMA) platform is a powerful tool for high-throughput biological and chemical applications, enabling miniaturization and parallelization of experimental processes. Capable of holding hundreds of nanoliter droplets, it facilitates the screening and analysis of samples, such as cells, bacteria, embryos, and spheroids. Handling thousands of small volumes in parallel presents significant challenges. In this study, we utilize the open format of the DMA for controlled, parallel high-throughput liquid manipulations using the sandwich technique. We demonstrate high-throughput medium replacement at nanoliter-scale, maintaining high cell viability on DMA for up to 7 days; for HeLa-CLL2 cells (adherent) and SU-DHL4 cells (suspension), and up to 14 days for HEK293 spheroids. Additionally, we achieve highly parallel aliquot uptake from nanoliter droplets, enabling non-destructive cell viability assessments. Furthermore, the presented method enables the parallel transfer of cell spheroids between different DMAs, allowing transfer and pooling of spheroids in seconds without damage. These advances significantly enhance the capabilities of the DMA platform, enabling long-term cell culture in nanoliter droplets and parallel sampling for high-throughput cell or spheroid manipulation. This broadens the scope of DMA's potential applications in fields such as cell-based high-throughput screening, formation of complex 3D cell models for drug screening, and microtissue engineering.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.