Yuzhen Yang, Han Jia, Yunhan Yang, Ping Zhou, Jun Yang
{"title":"观测水下声波晶体内连续体中的合并法布里-珀罗束缚态","authors":"Yuzhen Yang, Han Jia, Yunhan Yang, Ping Zhou, Jun Yang","doi":"10.1103/physrevb.110.184108","DOIUrl":null,"url":null,"abstract":"Resonant modes within phononic crystals exhibit remarkable capabilities for the effective control of acoustic waves. In this study, we examine an underwater system comprising bilayer periodic polymethyl methacrylate rods and investigate the behaviors of Fabry-Perot bound states in the continuum (BICs) by adjusting the interlayer spacing parameter and the side length of rectangular rods. Additionally, we demonstrate the evolutionary trajectories of the Fabry-Perot BICs within a two-dimensional parameter space. During the evolution process, we observe fascinating phenomena such as merging, annihilation, and regeneration of BICs. Notably, the merging of BICs enables the achievement of high <mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Q\" data-semantic-type=\"identifier\"><mjx-c>𝑄</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> resonance across a broadened range of geometric parameters. The outcomes of this investigation present more opportunities for the design of robust acoustic devices.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of merged Fabry-Perot bound states in the continuum within an underwater phononic crystal\",\"authors\":\"Yuzhen Yang, Han Jia, Yunhan Yang, Ping Zhou, Jun Yang\",\"doi\":\"10.1103/physrevb.110.184108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resonant modes within phononic crystals exhibit remarkable capabilities for the effective control of acoustic waves. In this study, we examine an underwater system comprising bilayer periodic polymethyl methacrylate rods and investigate the behaviors of Fabry-Perot bound states in the continuum (BICs) by adjusting the interlayer spacing parameter and the side length of rectangular rods. Additionally, we demonstrate the evolutionary trajectories of the Fabry-Perot BICs within a two-dimensional parameter space. During the evolution process, we observe fascinating phenomena such as merging, annihilation, and regeneration of BICs. Notably, the merging of BICs enables the achievement of high <mjx-container ctxtmenu_counter=\\\"27\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper Q\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑄</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> resonance across a broadened range of geometric parameters. The outcomes of this investigation present more opportunities for the design of robust acoustic devices.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.184108\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.184108","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Observation of merged Fabry-Perot bound states in the continuum within an underwater phononic crystal
Resonant modes within phononic crystals exhibit remarkable capabilities for the effective control of acoustic waves. In this study, we examine an underwater system comprising bilayer periodic polymethyl methacrylate rods and investigate the behaviors of Fabry-Perot bound states in the continuum (BICs) by adjusting the interlayer spacing parameter and the side length of rectangular rods. Additionally, we demonstrate the evolutionary trajectories of the Fabry-Perot BICs within a two-dimensional parameter space. During the evolution process, we observe fascinating phenomena such as merging, annihilation, and regeneration of BICs. Notably, the merging of BICs enables the achievement of high 𝑄 resonance across a broadened range of geometric parameters. The outcomes of this investigation present more opportunities for the design of robust acoustic devices.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter