{"title":"不断演变的肿瘤的生命史动态:对任务专业化、权衡和肿瘤异质性的见解。","authors":"Mahmoud Ahmed, Deok Ryong Kim","doi":"10.1186/s12935-024-03538-4","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of cancer cells parallels species evolution in numerous ways. Variations arise and spread under the pressure of competition between cancer cells. Current investigations of tumor evolution echo earlier debates between biologists. These include the role of non-Darwinian mechanisms, the contribution of neutral evolution, and life history dynamics. The trade-off between proliferation and metastasis is the most well-studied application of life history theory to cancer evolution. This article briefly introduces some parallels between cancer and species evolution, focusing on the life history of evolving tumors. Next, we review evidence from simulation and experimental studies supporting task specialization and trade-offs in cancer. We also cover recent work on inferring tumor tasks from data. We then turn to the implications of multi-tasking and the utility of the theory in explaining critical aspects of tumor heterogeneity. Finally, we discuss some of the criticism and future directions of this research topic.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"24 1","pages":"364"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539310/pdf/","citationCount":"0","resultStr":"{\"title\":\"Life history dynamics of evolving tumors: insights into task specialization, trade-offs, and tumor heterogeneity.\",\"authors\":\"Mahmoud Ahmed, Deok Ryong Kim\",\"doi\":\"10.1186/s12935-024-03538-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of cancer cells parallels species evolution in numerous ways. Variations arise and spread under the pressure of competition between cancer cells. Current investigations of tumor evolution echo earlier debates between biologists. These include the role of non-Darwinian mechanisms, the contribution of neutral evolution, and life history dynamics. The trade-off between proliferation and metastasis is the most well-studied application of life history theory to cancer evolution. This article briefly introduces some parallels between cancer and species evolution, focusing on the life history of evolving tumors. Next, we review evidence from simulation and experimental studies supporting task specialization and trade-offs in cancer. We also cover recent work on inferring tumor tasks from data. We then turn to the implications of multi-tasking and the utility of the theory in explaining critical aspects of tumor heterogeneity. Finally, we discuss some of the criticism and future directions of this research topic.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"24 1\",\"pages\":\"364\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539310/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03538-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03538-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Life history dynamics of evolving tumors: insights into task specialization, trade-offs, and tumor heterogeneity.
The evolution of cancer cells parallels species evolution in numerous ways. Variations arise and spread under the pressure of competition between cancer cells. Current investigations of tumor evolution echo earlier debates between biologists. These include the role of non-Darwinian mechanisms, the contribution of neutral evolution, and life history dynamics. The trade-off between proliferation and metastasis is the most well-studied application of life history theory to cancer evolution. This article briefly introduces some parallels between cancer and species evolution, focusing on the life history of evolving tumors. Next, we review evidence from simulation and experimental studies supporting task specialization and trade-offs in cancer. We also cover recent work on inferring tumor tasks from data. We then turn to the implications of multi-tasking and the utility of the theory in explaining critical aspects of tumor heterogeneity. Finally, we discuss some of the criticism and future directions of this research topic.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.