Hui Wang, Xiaodong Li, Boyu Meng, Wei Chang, Minghao Zhang, Likai Miao, Siyu Wei, Haikun Yang, Shengting Li, Yonghai Fan, Mingchao Qian, Yuling Chen, Shahid Ullah Khan, Lijuan Wei, Cunmin Qu, Jiana Li, Jiaming Song, Kun Lu
{"title":"解密甘蓝型油菜中的 Arf(ADP-核糖基化因子)基因家族:关于重复、表达和油菜籽增产的全基因组见解。","authors":"Hui Wang, Xiaodong Li, Boyu Meng, Wei Chang, Minghao Zhang, Likai Miao, Siyu Wei, Haikun Yang, Shengting Li, Yonghai Fan, Mingchao Qian, Yuling Chen, Shahid Ullah Khan, Lijuan Wei, Cunmin Qu, Jiana Li, Jiaming Song, Kun Lu","doi":"10.1016/j.ijbiomac.2024.137257","DOIUrl":null,"url":null,"abstract":"<p><p>The Arf gene family is essential for crop growth and development by regulating vesicle transport. However, few studies exist on the role of Arfs in the growth and yield formation of Brassica napus. Here we provide an exhaustive account of the phylogeny and expression of the 66 Arfs in rapeseed. We found that the expansion of Arf gene family is mainly through whole genome duplication, and some genes are loss during the expansion process. Expression analysis revealed that the Arfs in group X, with the exception of BnaC02.ARFA1B, BnaC06.ARFA1A.2, and BnaA07.ARFA1A.2, exhibited high expression levels across various tissues of B. napus at different developmental stages. These results indicate that the Arfss in group X were important in influencing rapeseed growth and development. We have found that Arfs in B. napus may have a more complex regulatory mechanism due to homologous recombination and gene sub-functionalization. Haplotype analysis indicated that Arfs regulate B. napus yield formation. We found high expression of BnaC07.ARFA1A in all tissues, and its overexpression significantly increased rapeseed silique number and yield. The comprehensive analysis will further characterize the functions of Arfs in B. napus and enhance regulatory networks for yield formation in B. napus.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Arf (ADP-ribosylation factor) gene family in Brassica napus L.: Genome-wide insights into duplication, expression, and rapeseed yield enhancement.\",\"authors\":\"Hui Wang, Xiaodong Li, Boyu Meng, Wei Chang, Minghao Zhang, Likai Miao, Siyu Wei, Haikun Yang, Shengting Li, Yonghai Fan, Mingchao Qian, Yuling Chen, Shahid Ullah Khan, Lijuan Wei, Cunmin Qu, Jiana Li, Jiaming Song, Kun Lu\",\"doi\":\"10.1016/j.ijbiomac.2024.137257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Arf gene family is essential for crop growth and development by regulating vesicle transport. However, few studies exist on the role of Arfs in the growth and yield formation of Brassica napus. Here we provide an exhaustive account of the phylogeny and expression of the 66 Arfs in rapeseed. We found that the expansion of Arf gene family is mainly through whole genome duplication, and some genes are loss during the expansion process. Expression analysis revealed that the Arfs in group X, with the exception of BnaC02.ARFA1B, BnaC06.ARFA1A.2, and BnaA07.ARFA1A.2, exhibited high expression levels across various tissues of B. napus at different developmental stages. These results indicate that the Arfss in group X were important in influencing rapeseed growth and development. We have found that Arfs in B. napus may have a more complex regulatory mechanism due to homologous recombination and gene sub-functionalization. Haplotype analysis indicated that Arfs regulate B. napus yield formation. We found high expression of BnaC07.ARFA1A in all tissues, and its overexpression significantly increased rapeseed silique number and yield. The comprehensive analysis will further characterize the functions of Arfs in B. napus and enhance regulatory networks for yield formation in B. napus.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137257\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Deciphering the Arf (ADP-ribosylation factor) gene family in Brassica napus L.: Genome-wide insights into duplication, expression, and rapeseed yield enhancement.
The Arf gene family is essential for crop growth and development by regulating vesicle transport. However, few studies exist on the role of Arfs in the growth and yield formation of Brassica napus. Here we provide an exhaustive account of the phylogeny and expression of the 66 Arfs in rapeseed. We found that the expansion of Arf gene family is mainly through whole genome duplication, and some genes are loss during the expansion process. Expression analysis revealed that the Arfs in group X, with the exception of BnaC02.ARFA1B, BnaC06.ARFA1A.2, and BnaA07.ARFA1A.2, exhibited high expression levels across various tissues of B. napus at different developmental stages. These results indicate that the Arfss in group X were important in influencing rapeseed growth and development. We have found that Arfs in B. napus may have a more complex regulatory mechanism due to homologous recombination and gene sub-functionalization. Haplotype analysis indicated that Arfs regulate B. napus yield formation. We found high expression of BnaC07.ARFA1A in all tissues, and its overexpression significantly increased rapeseed silique number and yield. The comprehensive analysis will further characterize the functions of Arfs in B. napus and enhance regulatory networks for yield formation in B. napus.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.