{"title":"整合 MALDI 糖型分析和核磁共振分析,揭示致病性大肠杆菌 O111 的 O 抗原亚结构。","authors":"June Chelyn Lee, Shogo Urakami, Hiroshi Hinou","doi":"10.1016/j.ijbiomac.2024.137178","DOIUrl":null,"url":null,"abstract":"<p><p>Escherichia coli O111 is a critical pathogenic E. coli serotype that causes severe, potentially fatal complications. Despite its reported variation, only one structure of the O-antigen polysaccharide from E. coli O111 has been reported. Here, a substructure of the O-antigen from E. coli O111 was characterized using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and NMR analysis. MALDI glycotyping revealed differing O-antigen repeating unit masses of Δm/z 787 and 828 in the E. coli strains and lipopolysaccharides from the O111 serogroup. This variation was caused by the replacement of the hexose residue with hexosamine in the repeating units, which was further confirmed by LIFT-TOF/TOF analysis. Structural elucidation of the O111 substructure by NMR analysis further demonstrated replacement of the hydroxyl group with an N-acetyl group on the terminal glucose residue of the O-antigen pentasaccharide repeating unit. To our knowledge, this study is the first to provide a detailed structural analysis of a new O-antigen substructure from the E. coli O111 serogroup.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of MALDI glycotyping and NMR analysis to uncover an O-antigen substructure from pathogenic Escherichia coli O111.\",\"authors\":\"June Chelyn Lee, Shogo Urakami, Hiroshi Hinou\",\"doi\":\"10.1016/j.ijbiomac.2024.137178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Escherichia coli O111 is a critical pathogenic E. coli serotype that causes severe, potentially fatal complications. Despite its reported variation, only one structure of the O-antigen polysaccharide from E. coli O111 has been reported. Here, a substructure of the O-antigen from E. coli O111 was characterized using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and NMR analysis. MALDI glycotyping revealed differing O-antigen repeating unit masses of Δm/z 787 and 828 in the E. coli strains and lipopolysaccharides from the O111 serogroup. This variation was caused by the replacement of the hexose residue with hexosamine in the repeating units, which was further confirmed by LIFT-TOF/TOF analysis. Structural elucidation of the O111 substructure by NMR analysis further demonstrated replacement of the hydroxyl group with an N-acetyl group on the terminal glucose residue of the O-antigen pentasaccharide repeating unit. To our knowledge, this study is the first to provide a detailed structural analysis of a new O-antigen substructure from the E. coli O111 serogroup.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137178\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137178","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
大肠杆菌 O111 血清型是一种重要的致病性大肠杆菌菌株,可引起严重的、潜在的致命并发症。尽管有报道称大肠杆菌 O111 的 O 抗原多糖存在变异,但目前仅有一种结构被报道。本文利用基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱法和核磁共振分析鉴定了大肠杆菌 O111 的 O 抗原子结构。MALDI 糖型分析表明,O111 血清群的大肠杆菌菌株和脂多糖的 O 抗原重复单位质量分别为 Δm/z 787 和 828。LIFT-TOF/TOF分析进一步证实了这一点。通过核磁共振分析对 O111 亚结构的阐明进一步表明,O 抗原五糖重复单元末端葡萄糖残基上的羟基被 N-乙酰基取代。据我们所知,这项研究首次对大肠杆菌 O111 血清群的一种新的 O 型抗原亚结构进行了详细的结构分析。
Integration of MALDI glycotyping and NMR analysis to uncover an O-antigen substructure from pathogenic Escherichia coli O111.
Escherichia coli O111 is a critical pathogenic E. coli serotype that causes severe, potentially fatal complications. Despite its reported variation, only one structure of the O-antigen polysaccharide from E. coli O111 has been reported. Here, a substructure of the O-antigen from E. coli O111 was characterized using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and NMR analysis. MALDI glycotyping revealed differing O-antigen repeating unit masses of Δm/z 787 and 828 in the E. coli strains and lipopolysaccharides from the O111 serogroup. This variation was caused by the replacement of the hexose residue with hexosamine in the repeating units, which was further confirmed by LIFT-TOF/TOF analysis. Structural elucidation of the O111 substructure by NMR analysis further demonstrated replacement of the hydroxyl group with an N-acetyl group on the terminal glucose residue of the O-antigen pentasaccharide repeating unit. To our knowledge, this study is the first to provide a detailed structural analysis of a new O-antigen substructure from the E. coli O111 serogroup.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.