{"title":"以菠萝茎淀粉为基材、掺入菠萝叶碳点作为功能填料的薄膜,可用于活性食品包装。","authors":"Pusita Kuchaiyaphum, Taweechai Amornsakchai, Chatrachatchaya Chotichayapong, Nikorn Saengsuwan, Visittapong Yordsri, Chanchana Thanachayanont, Phitchaya Batpo, Phatcharaporn Sotawong","doi":"10.1016/j.ijbiomac.2024.137224","DOIUrl":null,"url":null,"abstract":"<p><p>Pineapple leaf waste, a byproduct of agricultural processes, was used as a novel raw material to synthesize carbon dots (CDs) through a simple hydrothermal method. The CDs were subsequently incorporated into pineapple stem starch (PSS)-based active food packaging films. The characterization of the CDs and PSS-CDs films was conducted using various techniques, including UV-light spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The results revealed that the CDs measured 2.36 ± 0.33 nm and exhibited antioxidant and antibacterial activities. The addition of the CDs led to notable enhancements in both mechanical strength and UV-barrier properties. Thus, PSS-CDs packaging film was successfully prepared, with the incorporation of CDs enhancing the antioxidant and antimicrobial properties of the film, thereby extending the shelf-life of fresh pork.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pineapple stem starch-based films incorporated with pineapple leaf carbon dots as functional filler for active food packaging applications.\",\"authors\":\"Pusita Kuchaiyaphum, Taweechai Amornsakchai, Chatrachatchaya Chotichayapong, Nikorn Saengsuwan, Visittapong Yordsri, Chanchana Thanachayanont, Phitchaya Batpo, Phatcharaporn Sotawong\",\"doi\":\"10.1016/j.ijbiomac.2024.137224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pineapple leaf waste, a byproduct of agricultural processes, was used as a novel raw material to synthesize carbon dots (CDs) through a simple hydrothermal method. The CDs were subsequently incorporated into pineapple stem starch (PSS)-based active food packaging films. The characterization of the CDs and PSS-CDs films was conducted using various techniques, including UV-light spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The results revealed that the CDs measured 2.36 ± 0.33 nm and exhibited antioxidant and antibacterial activities. The addition of the CDs led to notable enhancements in both mechanical strength and UV-barrier properties. Thus, PSS-CDs packaging film was successfully prepared, with the incorporation of CDs enhancing the antioxidant and antimicrobial properties of the film, thereby extending the shelf-life of fresh pork.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137224\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137224","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pineapple stem starch-based films incorporated with pineapple leaf carbon dots as functional filler for active food packaging applications.
Pineapple leaf waste, a byproduct of agricultural processes, was used as a novel raw material to synthesize carbon dots (CDs) through a simple hydrothermal method. The CDs were subsequently incorporated into pineapple stem starch (PSS)-based active food packaging films. The characterization of the CDs and PSS-CDs films was conducted using various techniques, including UV-light spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The results revealed that the CDs measured 2.36 ± 0.33 nm and exhibited antioxidant and antibacterial activities. The addition of the CDs led to notable enhancements in both mechanical strength and UV-barrier properties. Thus, PSS-CDs packaging film was successfully prepared, with the incorporation of CDs enhancing the antioxidant and antimicrobial properties of the film, thereby extending the shelf-life of fresh pork.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.