Ettore Napolitano, Andrea Criscuolo, Claudia Riccardi, Chiara Platella, Rosa Gaglione, Angela Arciello, Domenica Musumeci, Daniela Montesarchio
{"title":"退火有害时:HMGB1 靶向 G-四叉适配体的案例。","authors":"Ettore Napolitano, Andrea Criscuolo, Claudia Riccardi, Chiara Platella, Rosa Gaglione, Angela Arciello, Domenica Musumeci, Daniela Montesarchio","doi":"10.1016/j.ijbiomac.2024.137148","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution. Herein, we fully characterized the same anti-HMGB1 aptamers after a standard annealing procedure performed on diluted samples. Notably, upon a thermal unfolding/folding cycle, these aptamers, and particularly the best ones in the not-annealed form, showed significant conformational switches compared to the same systems analyzed without annealing, forming exclusively monomeric G4 structures, featured by poor thermal and enzymatic stabilities, along with lower protein affinities. These results prove that, for these aptamers, analyzed in the chosen conditions, annealing at low concentration does not produce a beneficial effect in terms of favouring the most bioactive species.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When annealing is detrimental: The case of HMGB1-targeting G-quadruplex aptamers.\",\"authors\":\"Ettore Napolitano, Andrea Criscuolo, Claudia Riccardi, Chiara Platella, Rosa Gaglione, Angela Arciello, Domenica Musumeci, Daniela Montesarchio\",\"doi\":\"10.1016/j.ijbiomac.2024.137148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution. Herein, we fully characterized the same anti-HMGB1 aptamers after a standard annealing procedure performed on diluted samples. Notably, upon a thermal unfolding/folding cycle, these aptamers, and particularly the best ones in the not-annealed form, showed significant conformational switches compared to the same systems analyzed without annealing, forming exclusively monomeric G4 structures, featured by poor thermal and enzymatic stabilities, along with lower protein affinities. These results prove that, for these aptamers, analyzed in the chosen conditions, annealing at low concentration does not produce a beneficial effect in terms of favouring the most bioactive species.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137148\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137148","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
When annealing is detrimental: The case of HMGB1-targeting G-quadruplex aptamers.
In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution. Herein, we fully characterized the same anti-HMGB1 aptamers after a standard annealing procedure performed on diluted samples. Notably, upon a thermal unfolding/folding cycle, these aptamers, and particularly the best ones in the not-annealed form, showed significant conformational switches compared to the same systems analyzed without annealing, forming exclusively monomeric G4 structures, featured by poor thermal and enzymatic stabilities, along with lower protein affinities. These results prove that, for these aptamers, analyzed in the chosen conditions, annealing at low concentration does not produce a beneficial effect in terms of favouring the most bioactive species.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.